Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Parkinsons Dis ; 7(1): 67, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341348

RESUMO

Deep brain stimulation (DBS) is currently a standard procedure for advanced Parkinson's disease. Many centers employ awake physiological navigation and stimulation assessment to optimize DBS localization and outcome. To enable DBS under sedation, asleep DBS, we characterized the cortico-basal ganglia neuronal network of two nonhuman primates under propofol, ketamine, and interleaved propofol-ketamine (IPK) sedation. Further, we compared these sedation states in the healthy and Parkinsonian condition to those of healthy sleep. Ketamine increases high-frequency power and synchronization while propofol increases low-frequency power and synchronization in polysomnography and neuronal activity recordings. Thus, ketamine does not mask the low-frequency oscillations used for physiological navigation toward the basal ganglia DBS targets. The brain spectral state under ketamine and propofol mimicked rapid eye movement (REM) and Non-REM (NREM) sleep activity, respectively, and the IPK protocol resembles the NREM-REM sleep cycle. These promising results are a meaningful step toward asleep DBS with nondistorted physiological navigation.

2.
Cell Rep ; 30(8): 2555-2566.e3, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101735

RESUMO

It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20-30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease.


Assuntos
Comportamento Animal/fisiologia , Ritmo beta/fisiologia , Potenciais de Ação/fisiologia , Animais , Condicionamento Operante , Estimulação Elétrica , Feminino , Macaca mulatta
3.
Cereb Cortex ; 22(2): 294-307, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21653284

RESUMO

During visual fixation, the eyes make fast involuntary miniature movements known as microsaccades (MSs). When MSs are executed they displace the visual image over the retina and can generate neural modulation along the visual pathway. However, the effects of MSs on neural activity have substantial variability and are not fully understood. By utilizing voltage-sensitive dye imaging, we imaged the spatiotemporal patterns induced by MSs in V1 and V2 areas of behaving monkeys while they were fixating and presented with visual stimuli. We then investigated the neuronal modulation dynamics, induced by MSs, under different visual stimulation. MSs induced monophasic or biphasic neural responses depending on stimulus size. These neural responses were accompanied by different spatiotemporal patterns of synchronization. Finally, we show that a local patch of population response evoked by a small stimulus was clearly shifted over the V1 retinotopic map after each MS. Our results demonstrate the lack of visual stability in V1 following MSs and help clarify the substantial variability reported for MSs effects on neuronal responses. The observed neural effects suggest that MSs are associated with a continuum of neuronal responses in V1 area reflecting diverse spatiotemporal dynamics.


Assuntos
Mapeamento Encefálico , Fixação Ocular , Movimentos Sacádicos , Córtex Visual/fisiologia , Animais , Fenômenos Biomecânicos , Sincronização Cortical/fisiologia , Potenciais Evocados Visuais/fisiologia , Lateralidade Funcional , Macaca fascicularis , Masculino , Estimulação Luminosa/métodos , Estatística como Assunto , Fatores de Tempo , Vias Visuais/fisiologia , Imagens com Corantes Sensíveis à Voltagem
4.
J Neurosci ; 30(33): 11232-45, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20720131

RESUMO

Visual processing shows a highly distributed organization in which the presentation of a visual stimulus simultaneously activates neurons in multiple columns across several cortical areas. It has been suggested that precise spatiotemporal activity patterns within and across cortical areas play a key role in higher cognitive, motor, and visual functions. In the visual system, these patterns have been proposed to take part in binding stimulus features into a coherent object, i.e., to be involved in perceptual grouping. Using voltage-sensitive dye imaging (VSDI) in behaving monkeys (Macaca fascicularis, males), we simultaneously measured neural population activity in the primary visual cortex (V1) and extrastriate cortex (V2, V4) at high spatial and temporal resolution. We detected time point population events (PEs) in the VSDI signal of each pixel and found that they reflect transient increased neural activation within local populations by establishing their relation to spiking and local field potential activity. Then, we searched for repeating space and time relations between the detected PEs. We demonstrate the following: (1) spatiotemporal patterns occurring within (horizontal) and across (vertical) early visual areas repeat significantly above chance level; (2) information carried in only a few patterns can be used to reliably discriminate between stimulus categories on a single-trial level; (3) the spatiotemporal patterns yielding high classification performance are characterized by late temporal occurrence and top-down propagation, which are consistent with cortical mechanisms involving perceptual grouping. The pattern characteristics and the robust relation between the patterns and the stimulus categories suggest that spatiotemporal activity patterns play an important role in cortical mechanisms of higher visual processing.


Assuntos
Córtex Visual/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação , Animais , Potenciais Evocados Visuais , Medições dos Movimentos Oculares , Macaca fascicularis , Masculino , Microeletrodos , Estimulação Luminosa , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Imagens com Corantes Sensíveis à Voltagem
5.
Cereb Cortex ; 20(6): 1293-304, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19759123

RESUMO

Collinear proximal flankers can facilitate the detection of a low-contrast target or generate false-alarm target detection in the absence of a target. Although these effects are known to involve subthreshold neuronal interactions beyond the classical receptive field, the underlying neuronal mechanisms are not fully understood. Here, we used voltage-sensitive dye imaging that emphasizes subthreshold population activity, at high spatial and temporal resolution and imaged the visual cortex of fixating monkeys while they were presented with a low-contrast Gabor target, embedded within collinear or orthogonal flankers. We found that neuronal activity at the target site in area primary visual cortex increased and response latency decreased due to spatial spread of activation from the flankers' site. This increased activity was smaller than expected by a linear summation. The presentation of flankers alone induced strong spatial filling-in at the target site. Importantly, the increased neuronal activity at the target site was synchronized over time, both locally and with neuronal population at the flanker's site. This onset synchronization was higher for collinear than for orthogonal flankers. We further show that synchrony is a superior code over amplitude, for discriminating collinear from orthogonal pattern. These results suggest that population synchrony can serve as a code to discriminate contextual effects.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Evocados Visuais/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Corantes Fluorescentes , Macaca fascicularis , Masculino , Rede Nervosa/anatomia & histologia , Testes Neuropsicológicos , Estimulação Luminosa , Transmissão Sináptica/fisiologia , Córtex Visual/anatomia & histologia , Imagens com Corantes Sensíveis à Voltagem/métodos
6.
J Neurosci ; 28(14): 3747-58, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18385333

RESUMO

Is sound location represented in the auditory cortex of humans and monkeys? Human neuroimaging experiments have had only mixed success at demonstrating sound location sensitivity in primary auditory cortex. This is in apparent conflict with studies in monkeys and other animals, in which single-unit recording studies have found stronger evidence for spatial sensitivity. Does this apparent discrepancy reflect a difference between humans and animals, or does it reflect differences in the sensitivity of the methods used for assessing the representation of sound location? The sensitivity of imaging methods such as functional magnetic resonance imaging depends on the following two key aspects of the underlying neuronal population: (1) what kind of spatial sensitivity individual neurons exhibit and (2) whether neurons with similar response preferences are clustered within the brain. To address this question, we conducted a single-unit recording study in monkeys. We investigated the nature of spatial sensitivity in individual auditory cortical neurons to determine whether they have receptive fields (place code) or monotonic (rate code) sensitivity to sound azimuth. Second, we tested how strongly the population of neurons favors contralateral locations. We report here that the majority of neurons show predominantly monotonic azimuthal sensitivity, forming a rate code for sound azimuth, but that at the population level the degree of contralaterality is modest. This suggests that the weakness of the evidence for spatial sensitivity in human neuroimaging studies of auditory cortex may be attributable to limited lateralization at the population level, despite what may be considerable spatial sensitivity in individual neurons.


Assuntos
Córtex Auditivo/citologia , Mapeamento Encefálico , Neurônios/fisiologia , Localização de Som/fisiologia , Som , Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Córtex Auditivo/fisiologia , Feminino , Lateralidade Funcional , Macaca mulatta , Imageamento por Ressonância Magnética/métodos , Masculino , Distribuição Normal , Tempo de Reação/fisiologia , Fatores de Tempo
7.
Exp Brain Res ; 168(1-2): 272-6, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16328295

RESUMO

How the brain responds to sequences of sounds is a question of great relevance to a variety of auditory perceptual phenomena. We investigated how long the responses of neurons in the primary auditory cortex of awake monkeys are influenced by the previous sound. We found that responses to the second sound of a two-sound sequence were generally attenuated compared to the response that sound evoked when it was presented first. The attenuation remained evident at the population level even out to inter-stimulus intervals (ISIs) of 5 s, although it was of modest size for ISIs >2 s. Behavioral context (performance versus non-performance of a visual fixation task during sound presentation) did not influence the results. The long time course of the first sound's influence suggests that, under natural conditions, neural responses in auditory cortex are rarely governed solely by the current sound.


Assuntos
Córtex Auditivo/citologia , Percepção Auditiva/fisiologia , Limiar Auditivo/fisiologia , Neurônios/fisiologia , Vigília , Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Animais , Córtex Auditivo/fisiologia , Relação Dose-Resposta à Radiação , Haplorrinos , Tempo de Reação/fisiologia , Fatores de Tempo
8.
Curr Biol ; 13(7): 554-62, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12676085

RESUMO

BACKGROUND: Neurons in primary auditory cortex are known to be sensitive to the locations of sounds in space, but the reference frame for this spatial sensitivity has not been investigated. Conventional wisdom holds that the auditory and visual pathways employ different reference frames, with the auditory pathway using a head-centered reference frame and the visual pathway using an eye-centered reference frame. Reconciling these discrepant reference frames is therefore a critical component of multisensory integration. RESULTS: We tested the reference frame of neurons in the auditory cortex of primates trained to fixate visual stimuli at different orbital positions. We found that eye position altered the activity of about one third of the neurons in this region (35 of 113, or 31%). Eye position affected not only the responses to sounds (26 of 113, or 23%), but also the spontaneous activity (14 of 113, or 12%). Such effects were also evident when monkeys moved their eyes freely in the dark. Eye position and sound location interacted to produce a representation for auditory space that was neither head- nor eye-centered in reference frame. CONCLUSIONS: Taken together with emerging results in both visual and other auditory areas, these findings suggest that neurons whose responses reflect complex interactions between stimulus position and eye position set the stage for the eventual convergence of auditory and visual information.


Assuntos
Córtex Auditivo/fisiologia , Fixação Ocular/fisiologia , Primatas/fisiologia , Localização de Som/fisiologia , Estimulação Acústica , Potenciais de Ação , Animais , Vias Auditivas/fisiologia , Feminino , Movimentos da Cabeça/fisiologia , Vias Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...