Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 9(8): 2154-2161, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32649182

RESUMO

Short (15-30 residue) chains of amino acids at the amino termini of expressed proteins known as signal peptides (SPs) specify secretion in living cells. We trained an attention-based neural network, the Transformer model, on data from all available organisms in Swiss-Prot to generate SP sequences. Experimental testing demonstrates that the model-generated SPs are functional: when appended to enzymes expressed in an industrial Bacillus subtilis strain, the SPs lead to secreted activity that is competitive with industrially used SPs. Additionally, the model-generated SPs are diverse in sequence, sharing as little as 58% sequence identity to the closest known native signal peptide and 73% ± 9% on average.


Assuntos
Aprendizado de Máquina , Sinais Direcionadores de Proteínas , Área Sob a Curva , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Bases de Dados de Proteínas , Curva ROC
2.
EMBO J ; 39(18): e104081, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32500941

RESUMO

CO2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on < 5% of its natural diversity. Here, we searched for fast-carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form-II and form-II/III rubiscos. Most variants (> 100) were active in vitro, with the fastest having a turnover number of 22 ± 1 s-1 -sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere.


Assuntos
Mineração de Dados , Bases de Dados de Ácidos Nucleicos , Ribulose-Bifosfato Carboxilase , Isoenzimas/classificação , Isoenzimas/genética , Ribulose-Bifosfato Carboxilase/classificação , Ribulose-Bifosfato Carboxilase/genética
3.
PLoS Biol ; 17(3): e3000182, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30925180

RESUMO

In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress-low temperature. About 30 participants from around the world explored diverse environmental and genetic regimes of evolution. After a period of evolution in each lab, all strains of each species were competed with one another. In yeast, the most successful strategies were those that used mating, underscoring the importance of sex in evolution. In bacteria, the fittest strain used a strategy based on exploration of different mutation rates. Different strategies displayed variable levels of performance and stability across additional challenges and conditions. This study therefore uncovers principles of effective experimental evolutionary regimens and might prove useful also for biotechnological developments of new strains and for understanding natural strategies in evolutionary arms races between species. Evolthon constitutes a model for community-based scientific exploration that encourages creativity and cooperation.


Assuntos
Evolução Biológica , Escherichia coli/metabolismo , Humanos , Modelos Genéticos , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Temperatura
4.
Nat Commun ; 8(1): 1705, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167457

RESUMO

Understanding the evolution of a new metabolic capability in full mechanistic detail is challenging, as causative mutations may be masked by non-essential "hitchhiking" mutations accumulated during the evolutionary trajectory. We have previously used adaptive laboratory evolution of a rationally engineered ancestor to generate an Escherichia coli strain able to utilize CO2 fixation for sugar synthesis. Here, we reveal the genetic basis underlying this metabolic transition. Five mutations are sufficient to enable robust growth when a non-native Calvin-Benson-Bassham cycle provides all the sugar-derived metabolic building blocks. These mutations are found either in enzymes that affect the efflux of intermediates from the autocatalytic CO2 fixation cycle toward biomass (prs, serA, and pgi), or in key regulators of carbon metabolism (crp and ppsR). Using suppressor analysis, we show that a decrease in catalytic capacity is a common feature of all mutations found in enzymes. These findings highlight the enzymatic constraints that are essential to the metabolic stability of autocatalytic cycles and are relevant to future efforts in constructing non-native carbon fixation pathways.


Assuntos
Dióxido de Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Açúcares/metabolismo , Adaptação Fisiológica/genética , Biomassa , Metabolismo dos Carboidratos/genética , Ciclo do Carbono/genética , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Evolução Molecular Direcionada , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Genes Bacterianos , Genes Supressores , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Modelos Biológicos , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fotossíntese/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo
5.
Cell ; 166(1): 115-25, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27345370

RESUMO

Can a heterotrophic organism be evolved to synthesize biomass from CO2 directly? So far, non-native carbon fixation in which biomass precursors are synthesized solely from CO2 has remained an elusive grand challenge. Here, we demonstrate how a combination of rational metabolic rewiring, recombinant expression, and laboratory evolution has led to the biosynthesis of sugars and other major biomass constituents by a fully functional Calvin-Benson-Bassham (CBB) cycle in E. coli. In the evolved bacteria, carbon fixation is performed via a non-native CBB cycle, while reducing power and energy are obtained by oxidizing a supplied organic compound (e.g., pyruvate). Genome sequencing reveals that mutations in flux branchpoints, connecting the non-native CBB cycle to biosynthetic pathways, are essential for this phenotype. The successful evolution of a non-native carbon fixation pathway, though not yet resulting in net carbon gain, strikingly demonstrates the capacity for rapid trophic-mode evolution of metabolism applicable to biotechnology. PAPERCLIP.


Assuntos
Dióxido de Carbono/metabolismo , Evolução Molecular Direcionada , Escherichia coli/genética , Escherichia coli/metabolismo , Gluconeogênese , Redes e Vias Metabólicas , Processos Autotróficos , Carboidratos/biossíntese , Escherichia coli/crescimento & desenvolvimento , Espectrometria de Massas
6.
Sci Rep ; 6: 20224, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831574

RESUMO

Contamination susceptibility, water usage, and inability to utilize 5-carbon sugars and disaccharides are among the major obstacles in industrialization of sustainable biorefining. Extremophilic thermophiles and acidophiles are being researched to combat these problems, but organisms which answer all the above problems have yet to emerge. Here, we present engineering of the unexplored, extreme alkaliphile Bacillus marmarensis as a platform for new bioprocesses which meet all these challenges. With a newly developed transformation protocol and genetic tools, along with optimized RBSs and antisense RNA, we engineered B. marmarensis to produce ethanol at titers of 38 g/l and 65% yields from glucose in unsterilized media. Furthermore, ethanol titers and yields of 12 g/l and 50%, respectively, were produced from cellobiose and xylose in unsterilized seawater and algal-contaminated wastewater. As such, B. marmarensis presents a promising approach for the contamination-resistant biorefining of a wide range of carbohydrates in unsterilized, non-potable seawater.


Assuntos
Bacillus/fisiologia , Biotransformação , Engenharia Metabólica , Águas Residuárias , Biocatálise , Metabolismo dos Carboidratos , Etanol/metabolismo , Fermentação , Concentração de Íons de Hidrogênio
7.
Metab Eng ; 23: 53-61, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24566040

RESUMO

The non-recyclable use of nitrogen fertilizers in microbial production of fuels and chemicals remains environmentally detrimental. Conversion of protein wastes into biofuels and ammonia by engineering nitrogen flux in Escherichia coli has been demonstrated as a method to reclaim reduced-nitrogen and curb its environmental deposition. However, protein biomass requires a proteolysis process before it can be taken up and converted by any microbe. Here, we metabolically engineered Bacillus subtilis to hydrolyze polypeptides through its secreted proteases and to convert amino acids into advanced biofuels and ammonia fertilizer. Redirection of B. subtilis metabolism for amino-acid conversion required inactivation of the branched-chain amino-acid (BCAA) global regulator CodY. Additionally, the lipoamide acyltransferase (bkdB) was deleted to prevent conversion of branched-chain 2-keto acids into their acyl-CoA derivatives. With these deletions and heterologous expression of a keto-acid decarboxylase and an alcohol dehydrogenase, the final strain produced biofuels and ammonia from an amino-acid media with 18.9% and 46.6% of the maximum theoretical yield. The process was also demonstrated on several waste proteins. The results demonstrate the feasibility of direct microbial conversion of polypeptides into sustainable products.


Assuntos
Amônia/metabolismo , Bacillus subtilis , Biocombustíveis , Proteínas/metabolismo , Poluentes da Água/metabolismo , Purificação da Água/métodos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Engenharia Metabólica/métodos , Poluição da Água
8.
Genome Announc ; 1(6)2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24285666

RESUMO

Bacillus marmarensis strain DSM 21297 is an extreme obligate alkaliphile able to grow in medium up to pH 12.5. A whole-shotgun strategy and de novo assembly led to the generation of a 4-Mbp genome of this strain. The genome features alkaliphilic adaptations and pathways for n-butanol and poly(3-hydroxybutyrate) synthesis.

9.
Appl Microbiol Biotechnol ; 97(4): 1397-406, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23296497

RESUMO

Threats to stable oil supplies and concerns over environmental emissions have pushed for renewable biofuel developments to minimize dependence on fossil resources. Recent biofuel progress has moved towards fossil resource-independent carbon cycles, but environmental issues regarding use of nitrogen fertilizers have not been addressed on a global scale. The recently demonstrated conversion of waste protein biomass into advanced biofuels and renewable chemicals, while recycling nitrogen fertilizers, offers a glimpse of the efforts needed to balance the nitrogen cycle at scale. In general, the catabolism of protein into biofuels is challenging because of physiological regulation and thermodynamic limitations. This conversion became possible with metabolic engineering around ammonia assimilation, intracellular nitrogen flux, and quorum sensing. This review highlights the metabolic engineering solutions in transforming those cellular processes into driving forces for the high yield of chemical products from protein.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Biocombustíveis/microbiologia , Fertilizantes/análise , Engenharia Metabólica , Nitrogênio/metabolismo , Compostos Orgânicos/metabolismo , Proteínas/metabolismo , Reciclagem/métodos , Biocombustíveis/análise , Proteínas/genética
10.
Science ; 335(6076): 1596, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22461604

RESUMO

One of the major challenges in using electrical energy is the efficiency in its storage. Current methods, such as chemical batteries, hydraulic pumping, and water splitting, suffer from low energy density or incompatibility with current transportation infrastructure. Here, we report a method to store electrical energy as chemical energy in higher alcohols, which can be used as liquid transportation fuels. We genetically engineered a lithoautotrophic microorganism, Ralstonia eutropha H16, to produce isobutanol and 3-methyl-1-butanol in an electro-bioreactor using CO(2) as the sole carbon source and electricity as the sole energy input. The process integrates electrochemical formate production and biological CO(2) fixation and higher alcohol synthesis, opening the possibility of electricity-driven bioconversion of CO(2) to commercial chemicals.


Assuntos
Biocombustíveis , Butanóis/metabolismo , Dióxido de Carbono/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Pentanóis/metabolismo , Reatores Biológicos , Cupriavidus necator/crescimento & desenvolvimento , Eletricidade , Técnicas Eletroquímicas , Eletrodos , Formiatos/metabolismo , Genes Bacterianos , Engenharia Genética
11.
Curr Opin Biotechnol ; 23(3): 406-13, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22054644

RESUMO

Environmental concerns and an increasing global energy demand have spurred scientific research and political action to deliver large-scale production of liquid biofuels. Current biofuel processes and developing approaches have focused on closing the carbon cycle by biological fixation of atmospheric carbon dioxide and conversion of biomass to fuels. To date, these processes have relied on fertilizer produced by the energy-intensive Haber-Bosch process, and have not addressed the global nitrogen cycle and its environmental implications. Recent developments to convert protein to fuel and ammonia may begin to address these problems. In this scheme, recycling ammonia to either plant or algal feedstocks reduces the demand for synthetic fertilizer supplementation. Further development of this technology will realize its advantages of high carbon fixation rates, inexpensive and simple feedstock processing, in addition to reduced fertilizer requirements.


Assuntos
Biocombustíveis , Fertilizantes , Nitrogênio/metabolismo , Biocombustíveis/economia , Biomassa , Ciclo do Carbono , Fertilizantes/economia , Plantas/metabolismo , Reciclagem
12.
Beilstein J Org Chem ; 7: 1141-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21915219

RESUMO

The performance of the ThalesNano H-Cube(®), a commercial packed bed flow hydrogenator, was evaluated in the context of small scale reaction screening and optimization. A model reaction, the reduction of styrene to ethylbenzene through a 10% Pd/C catalyst bed, was used to examine performance at various pressure settings, over sequential runs, and with commercial catalyst cartridges. In addition, the consistency of the hydrogen flow was indirectly measured by in-line UV spectroscopy. Finally, system contamination due to catalyst leaching, and the resolution of this issue, is described. The impact of these factors on the run-to-run reproducibility of the H-Cube(®) reactor for screening and reaction optimization is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...