Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19655, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385632

RESUMO

Locomotor training based in virtual reality (VR) is promising for motor skill learning, with transfer of VR skills in turn required to benefit daily life locomotion. This study aimed to assess whether VR-adapted obstacle avoidance can be transferred to a physical obstacle and whether such transfer is retained after 1 week. Thirty-two young adults were randomly divided between two groups. A control group (CG) merely walked on a treadmill and an intervention group (IG) trained crossing 50 suddenly-appearing virtual obstacles. Both groups crossed three physical obstacles (transfer task) immediately after training (T1) and 1 week later (T2, transfer retention). Repeated practice in VR led to a decrease in toe clearance along with greater ankle plantarflexion and knee extension. IG participants crossed physical obstacles with a lower toe clearance compared to CG but revealed significantly higher values compared to the VR condition. VR adaptation was fully retained over 1 week. For physical obstacle avoidance there were differences between toe clearance of the third obstacle at T1 and the first obstacle at T2, indicating only partial transfer retention. We suggest that perception-action coupling, and thus sensorimotor coordination, may differ between VR and the physical world, potentially limiting retained transfer between conditions.


Assuntos
Realidade Virtual , Adulto Jovem , Humanos , Caminhada , Adaptação Fisiológica , Locomoção , Destreza Motora
2.
Sensors (Basel) ; 22(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408164

RESUMO

The assessment of the force-length relationship under mechanical loading is widely used to evaluate the mechanical properties of tendons and to gain information about their adaptation, function, and injury. This study aimed to provide a time-efficient ultrasound method for assessing Achilles tendon mechanical properties. On two days, eleven healthy young non-active adults performed eight maximal voluntary isometric ankle plantarflexion contractions on a dynamometer with simultaneous ultrasonographic recording. Maximal tendon elongation was assessed by digitizing ultrasound images at rest and at maximal tendon force. Achilles tendon stiffness index was calculated from the ratio of tendon force-to-strain. No within- and between-day differences were detected between the proposed method and manual frame by frame tracking in Achilles tendon maximal force, maximal elongation, maximal strain, and stiffness index. The overall coefficient of variation between trials ranged from 3.4% to 10.3% and average difference in tendon tracking between methods was less than 0.6% strain. Furthermore, an additional assessment demonstrated significant differences between elite athletes, healthy young, and older adults in Achilles tendon force and stiffness index. Hence, the analysis has the potential to reliably and accurately monitor changes in Achilles tendon mechanical properties due to aging and altered mechanical loading in a time-efficient manner.


Assuntos
Tendão do Calcâneo , Tendão do Calcâneo/diagnóstico por imagem , Idoso , Humanos , Contração Isométrica , Músculo Esquelético/diagnóstico por imagem , Reprodutibilidade dos Testes , Ultrassonografia
3.
Hum Mov Sci ; 82: 102937, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35217390

RESUMO

Generalisation of adaptations is key to effective stability control facing variety of postural threats during daily life activity. However, in a previous study we could demonstrate that adaptations to stability control do not necessarily transfer to an untrained motor task. Here, we examined the dynamic stability and modular organisation of motor responses to different perturbations (i.e. unpredictable gait-trip perturbations and subsequent loss of anterior stability in a lean-and-release protocol) in a group of young and middle-aged adults (n = 57; age range 19-53 years) to detect potential neuromotor factors limiting transfer of adaptations within the stability control system. We hypothesized that the motor system uses different modular organisation in recovery responses to tripping and lean-and-release, which may explain lack in positive transfer of adaptations in stability control. After eight trip-perturbations participants increased their dynamic stability during the first recovery step (p < 0.001), yet they showed no significant improvement to the untrained lean-and-release transfer task compared to controls who did not undergo the perturbation exposure (p = 0.44). Regarding the neuromuscular control of responses, lower number of synergies (3 vs. 4) was found for the lean-and-release compared to the gait-trip perturbation task, revealing profound differences in both the timing and function of the recruited muscles to match the biomechanical specificity of different perturbations. Our results provide indirect evidence that the motor system uses different modular organisation in diverse perturbation responses, what possibly inhibits inter-task generalisation of adaptations in stability control.


Assuntos
Marcha , Equilíbrio Postural , Adaptação Fisiológica/fisiologia , Adulto , Fenômenos Biomecânicos , Marcha/fisiologia , Generalização Psicológica , Humanos , Pessoa de Meia-Idade , Músculos , Equilíbrio Postural/fisiologia , Adulto Jovem
4.
Sensors (Basel) ; 22(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35009886

RESUMO

Use of head-mounted displays (HMDs) and hand-held displays (HHDs) may affect the effectiveness of stability control mechanisms and impair resistance to falls. This study aimed to examine whether the ability to control stability during locomotion is diminished while using HMDs and HHDs. Fourteen healthy adults (21-46 years) were assessed under single-task (no display) and dual-task (spatial 2-n-back presented on the HMD or the HHD) conditions while performing various locomotor tasks. An optical motion capture system and two force plates were used to assess locomotor stability using an inverted pendulum model. For perturbed standing, 57% of the participants were not able to maintain stability by counter-rotation actions when using either display, compared to the single-task condition. Furthermore, around 80% of participants (dual-task) compared to 50% (single-task) showed a negative margin of stability (i.e., an unstable body configuration) during recovery for perturbed walking due to a diminished ability to increase their base of support effectively. However, no evidence was found for HMDs or HHDs affecting stability during unperturbed locomotion. In conclusion, additional cognitive resources required for dual-tasking, using either display, are suggested to result in delayed response execution for perturbed standing and walking, consequently diminishing participants' ability to use stability control mechanisms effectively and increasing the risk of falls.


Assuntos
Acidentes por Quedas , Óculos Inteligentes , Adulto , Marcha , Humanos , Locomoção , Posição Ortostática , Caminhada
5.
Eur Rev Aging Phys Act ; 18(1): 20, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34615457

RESUMO

BACKGROUND: The assessment of stability recovery performance following perturbations contributes to the determination of fall resisting skills. This study investigated the association between stability recovery performances in two perturbation tasks (lean-and-release versus tripping). METHODS: Healthy adults (12 young: 24 ± 3 years; 21 middle-aged: 53 ± 5 years; 11 old: 72 ± 5 years) were suddenly released from a forward-inclined position attempting to recover stability with a single step. In a second task, all participants experienced a mechanically induced trip during treadmill walking. To assess dynamic stability performance, the antero-posterior margin of stability (MoS), the base of support (BoS), and the rate of increase in BoS were determined at each foot touchdown (TD) for both tasks. RESULTS: Only weak to moderate correlations in dynamic stability performance parameters were found between the two tasks (0.568 > r > 0.305, 0.001 < p < 0.04). A separation of participants according to the number of steps required to regain stability in the lean-and-release task revealed that multiple- (more than one step) compared to single-steppers showed a significantly lower MoS at TD (p = 0.003; g = 1.151), lower BoS at TD (p = 0.019; g = 0.888) and lower rate of increase in BoS until TD (p = 0.002; g = 1.212) after release. Despite these profound subgroup differences in the lean-and-release task, no differences between multiple- and single-steppers were observed in the stability recovery performance during tripping. CONCLUSION: The results provide evidence that the ability to effectively control dynamic stability following a sudden balance disturbance in adults across a wide age range is limited in its generalisation for different perturbation tasks.

6.
Hum Mov Sci ; 76: 102769, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33581561

RESUMO

Rapid stepping to preserve stability is a crucial action in avoiding a fall. It is also an important measure in the assessment of fall-resisting skills. We examined whether volitional step execution correlates with recovery stepping performance after sudden balance loss for adults of different ages. In addition, we investigated whether volitional step performance can discriminate between individuals with high and low balance recovery capabilities, i.e. between those making single versus multiple steps after balance perturbation. Healthy adults (28 young, 43 middle-aged and 26 older; 24 ± 4, 52 ± 5 and 72 ± 5 years respectively) performed a single step in the anterior direction volitionally in response to a mechanical stimulus to the heel. In a second stepping task, participants experienced sudden anterior balance loss in a lean-and-release protocol. For both tasks, an optical motion capture system was used to assess stepping kinematics. We found on average 28% shorter reaction times, 46% faster maximal step velocities and 48% higher rates of increase in base of support across all participants after sudden balance loss compared to volitional stepping (p < 0.001). There was a significant age-related decline in recovery stepping performance after sudden balance loss: 24/26 older, 15/43 middle-aged and none of the younger adults required two or more steps to regain balance (p < 0.001). Multiple- compared to single-steppers had on average 23% shorter step lengths and 12% lower maximal step velocities for the lean-and-release task (p < 0.01). Multiple-steppers also had reduced rates of increase in base of support for both stepping tasks (14% for balance recovery and 11% for volitional stepping). Furthermore, in examining the relationship between the results of the two tasks, only weak to moderate correlations were observed for step velocity and rate of increase in base of support (0.36 ≤ r ≤ 0.52; p < 0.001). Thus, performance in volitional step execution has a low potential to explain variability in recovery response after sudden balance loss in adults across the lifespan and hence seems less suitable to be used to identify deficiencies in reactive stepping responses necessary to cope with sudden balance disturbances.


Assuntos
Acidentes por Quedas , Destreza Motora/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Geriatria , Humanos , Longevidade , Masculino , Pessoa de Meia-Idade , Caminhada , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...