Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 666-669, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085651

RESUMO

Although sleep apnea is one of the most prevalent sleep disorders, most patients remain undiagnosed and untreated. The gold standard for sleep apnea diagnosis, polysomnography, has important limitations such as its high cost and complexity. This leads to a growing need for novel cost-effective systems. Mobile health tools and deep learning algorithms are nowadays being proposed as innovative solutions for automatic apnea detection. In this work, a convolutional neural network (CNN) is trained for the identification of apnea events from the spectrograms of audio signals recorded with a smartphone. A systematic comparison of the effect of different window sizes on the model performance is provided. According to the results, the best models are obtained with 60 s windows (sensitivity-0.72, specilicity-0.89, AUROC = 0.88), For smaller windows, the model performance can be negatively impacted, because the windows become shorter than most apnea events, by which sound reductions can no longer be appreciated. On the other hand, longer windows tend to include multiple or mixed events, that will confound the model. This careful trade-off demonstrates the importance of selecting a proper window size to obtain models with adequate predictive power. This paper shows that CNNs applied to smartphone audio signals can facilitate sleep apnea detection in a realistic setting and is a first step towards an automated method to assist sleep technicians. Clinical Relevance- The results show the effect of the window size on the predictive power of CNNs for apnea detection. Furthermore, the potential of smartphones, audio signals, and deep neural networks for automatic sleep apnea screening is demonstrated.


Assuntos
Síndromes da Apneia do Sono , Smartphone , Algoritmos , Humanos , Redes Neurais de Computação , Polissonografia , Síndromes da Apneia do Sono/diagnóstico
2.
Sci Rep ; 12(1): 7436, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523811

RESUMO

Radar systems can be used to perform human activity recognition in a privacy preserving manner. This can be achieved by using Deep Neural Networks, which are able to effectively process the complex radar data. Often these networks are large and do not scale well when processing a large amount of radar streams at once, for example when monitoring multiple rooms in a hospital. This work presents a framework that splits the processing of data in two parts. First, a forward Recurrent Neural Network (RNN) calculation is performed on an on-premise device (usually close to the radar sensor) which already gives a prediction of what activity is performed, and can be used for time-sensitive use-cases. Next, a part of the calculation and the prediction is sent to a more capable off-premise machine (most likely in the cloud or a data center) where a backward RNN calculation is performed that improves the previous prediction sent by the on-premise device. This enables fast notifications to staff if troublesome activities occur (such as falling) by the on-premise device, while the off-premise device captures activities missed or misclassified by the on-premise device.


Assuntos
Aprendizado Profundo , Radar , Acidentes por Quedas , Atividades Humanas , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...