Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 80(16): 3251-3264, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32580961

RESUMO

KRAS is mutated in most pancreatic ductal adenocarcinomas (PDAC) and yet remains undruggable. Here, we report that p38γ MAPK, which promotes PDAC tumorigenesis by linking KRAS signaling and aerobic glycolysis (also called the Warburg effect), is a novel therapeutic target. p38γ interacted with a glycolytic activator PFKFB3 that was dependent on mutated KRAS. KRAS transformation and overexpression of p38γ increased expression of PFKFB3 and glucose transporter GLUT2, conversely, silencing mutant KRAS, and p38γ decreased PFKFB3 and GLUT2 expression. p38γ phosphorylated PFKFB3 at S467, stabilized PFKFB3, and promoted their interaction with GLUT2. Pancreatic knockout of p38γ decreased p-PFKFB3/PFKFB3/GLUT2 protein levels, reduced aerobic glycolysis, and inhibited PDAC tumorigenesis in KPC mice. PFKFB3 and GLUT2 depended on p38γ to stimulate glycolysis and PDAC growth and p38γ required PFKFB3/S467 to promote these activities. A p38γ inhibitor cooperated with a PFKFB3 inhibitor to blunt aerobic glycolysis and PDAC growth, which was dependent on p38γ. Moreover, overexpression of p38γ, p-PFKFB3, PFKFB3, and GLUT2 in PDAC predicted poor clinical prognosis. These results indicate that p38γ links KRAS oncogene signaling and aerobic glycolysis to promote pancreatic tumorigenesis through PFKFB3 and GLUT2, and that p38γ and PFKFB3 may be targeted for therapeutic intervention in PDAC. SIGNIFICANCE: These findings show that p38γ links KRAS oncogene signaling and the Warburg effect through PFKBF3 and Glut2 to promote pancreatic tumorigenesis, which can be disrupted via inhibition of p38γ and PFKFB3.


Assuntos
Carcinoma Ductal Pancreático/etiologia , Transportador de Glucose Tipo 2/metabolismo , Glicólise , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/etiologia , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Aerobiose , Animais , Carcinoma Ductal Pancreático/prevenção & controle , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Colágeno , Combinação de Medicamentos , Feminino , Técnicas de Inativação de Genes , Inativação Gênica , Genes ras , Técnicas de Genotipagem , Humanos , Laminina , Masculino , Camundongos , Proteína Quinase 12 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/prevenção & controle , Fosforilação , Prognóstico , Proteoglicanas , Proteínas Proto-Oncogênicas p21(ras)/genética
2.
ACS Chem Neurosci ; 10(8): 3437-3453, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31257852

RESUMO

Dysfunction of excitatory amino acid transporters (EAATs) has been implicated in the pathogenesis of various neurological disorders, such as stroke, brain trauma, epilepsy, and several neurodegenerative disorders. EAAT2 is the main transporter subtype responsible for glutamate clearance in the brain, and plays a key role in regulating neurotransmission and preventing excitotoxicity. Therefore, compounds that increase the activity of EAAT2 have therapeutic potential for neuroprotection. In previous studies, we used virtual screening approaches to identify novel positive allosteric modulators (PAMs) of EAAT2. These compounds were shown to selectively increase the activity of EAAT2 and increase Vmax of transport, without changing substrate affinity. In this work, our major effort was to investigate whether increasing the activity of EAAT2 by allosteric modulation would translate to neuroprotection in in vitro primary culture models of excitotoxicity. To investigate potential neuroprotective effects of one EAAT2 PAM, GT949, we subjected cultures to acute and prolonged excitotoxic insults by exogenous application of glutamate, or oxidative stress by application of hydrogen peroxide. GT949 administration did not result in neuroprotection in the oxidative stress model, likely due to damage of the glutamate transporters. However, GT949 displayed neuroprotective properties after acute and prolonged glutamate-mediated excitotoxicity. We propose that this compound prevents excess glutamate signaling by increasing the rate of glutamate clearance by EAAT2, thereby preventing excitotoxic damage and cell death. This novel class of compounds is therefore an innovative approach for neuroprotection with potential for translation in in vivo animal models of excitotoxicity.


Assuntos
Transportador 2 de Aminoácido Excitatório/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piperazinas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Células Cultivadas , Ratos
3.
Acta Pharm Sin B ; 8(4): 511-517, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30109176

RESUMO

Protein kinases and phosphatases signal by phosphorylation and dephosphorylation to precisely control the activities of their individual and common substrates for a coordinated cellular outcome. In many situations, a kinase/phosphatase complex signals dynamically in time and space through their reciprocal regulations and their cooperative actions on a substrate. This complex may be essential for malignant transformation and progression and can therefore be considered as a target for therapeutic intervention. p38γ is a unique MAPK family member that contains a PDZ motif at its C-terminus and interacts with a PDZ domain-containing protein tyrosine phosphatase PTPH1. This PDZ-coupled binding is required for both PTPH1 dephosphorylation and inactivation of p38γ and for p38γ phosphorylation and activation of PTPH1. Moreover, the p38γ/PTPH1 complex can further regulate their substrates phosphorylation and dephosphorylation, which impacts Ras transformation, malignant growth and progression, and therapeutic response. This review will use the p38γ/PTPH1 signaling network as an example to discuss the potential of targeting the kinase/phosphatase signaling complex for development of novel targeted cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...