Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 24(7): e202200721, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642698

RESUMO

The use of light to control protein function is a critical tool in chemical biology. Here we describe the addition of a photocaged histidine to the genetic code. This unnatural amino acid becomes histidine upon exposure to light and allows for the optical control of enzymes that utilize active-site histidine residues. We demonstrate light-induced activation of a blue fluorescent protein and a chloramphenicol transferase. Further, we genetically encoded photocaged histidine in mammalian cells. We then used this approach in live cells for optical control of firefly luciferase and, Renilla luciferase. This tool should have utility in manipulating and controlling a wide range of biological processes.


Assuntos
Aminoácidos , Histidina , Animais , Histidina/genética , Aminoácidos/química , Proteínas/metabolismo , Luciferases de Renilla/genética , Código Genético , Mamíferos/genética , Mamíferos/metabolismo
2.
ACS Synth Biol ; 11(4): 1466-1476, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35060375

RESUMO

Genetic code expansion is a versatile method for in situ synthesis of modified proteins. During mRNA translation, amber stop codons are suppressed to site-specifically incorporate non-canonical amino acids. Thus, nanobodies can be equipped with photocaged amino acids to control target binding on demand. The efficiency of amber suppression and protein synthesis can vary with unpredictable background expression, and the reasons are hardly understood. Here, we identified a substantial limitation that prevented synthesis of nanobodies with N-terminal modifications for light control. After systematic analyses, we hypothesized that nanobody synthesis was severely affected by ribosomal inaccuracy during the early phases of translation. To circumvent a background-causing read-through of a premature stop codon, we designed a new suppression concept based on ribosomal skipping. As an example, we generated intrabodies with photoactivated target binding in mammalian cells. The findings provide valuable insights into the genetic code expansion and describe a versatile synthesis route for the generation of modified nanobodies that opens up new perspectives for efficient site-specific integration of chemical tools. In the area of photopharmacology, our flexible intrabody concept builds an ideal platform to modulate target protein function and interaction.


Assuntos
Anticorpos de Domínio Único , Aminoácidos/metabolismo , Animais , Códon de Terminação/genética , Código Genético , Mamíferos/genética , Biossíntese de Proteínas/genética , Ribossomos/genética , Ribossomos/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo
3.
Chem Sci ; 12(16): 5787-5795, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35342543

RESUMO

Due to their high stability and specificity in living cells, fluorescently labeled nanobodies are perfect probes for visualizing intracellular targets at an endogenous level. However, intrabodies bind unrestrainedly and hence may interfere with the target protein function. Here, we report a strategy to prevent premature binding through the development of photo-conditional intrabodies. Using genetic code expansion, we introduce photocaged amino acids within the nanobody-binding interface, which, after photo-activation, show instantaneous binding of target proteins with high spatiotemporal precision inside living cells. Due to the highly stable binding, light-guided intrabodies offer a versatile platform for downstream imaging and regulation of target proteins.

4.
Bioorg Med Chem ; 28(24): 115772, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069552

RESUMO

Genetic code expansion with unnatural amino acids (UAAs) has significantly broadened the chemical repertoire of proteins. Applications of this method in mammalian cells include probing of molecular interactions, conditional control of biological processes, and new strategies for therapeutics and vaccines. A number of methods have been developed for transient UAA mutagenesis in mammalian cells, each with unique features and advantages. All have in common a need to deliver genes encoding additional protein biosynthetic machinery (an orthogonal tRNA/tRNA synthetase pair) and a gene for the protein of interest. In this study, we present a comparative evaluation of select plasmid-based genetic code expansion systems and a detailed analysis of suppression efficiency with different UAAs and in different cell lines.


Assuntos
Plasmídeos/metabolismo , Proteínas/genética , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Animais , Linhagem Celular , Variações do Número de Cópias de DNA , Código Genético , Humanos , Camundongos , Mutagênese , Plasmídeos/genética , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Proteínas/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
5.
Methods Enzymol ; 638: 191-217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32416913

RESUMO

Effective, general methods for conditionally activating proteins in their native biological environments are highly useful for biological studies. Since phosphines and azides are not found in pro- and eukaryotic cells, the Staudinger reduction can function as an excellent small molecule-controlled switch for protein activation. This methodology involves site-specifically incorporating azidobenyl-lysine analogues into proteins in live cells. When placed at a crucial position, these unnatural side chains block protein function until a phosphine trigger is added. We discuss methods for expressing caged proteins in bacterial and mammalian cells in high yields, and activating the proteins with an optimized phosphine trigger. We also discuss important considerations for safe and effective synthesis of these molecules. This methodology was used to translocate proteins to the nucleus and to turn-on a protein post-translational modification (SUMOylation) in living cells.


Assuntos
Fosfinas , Animais , Azidas , Lisina , Proteínas
6.
Chembiochem ; 21(1-2): 141-148, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31664790

RESUMO

The Staudinger reduction and its variants have exceptional compatibility with live cells but can be limited by slow kinetics. Herein we report new small-molecule triggers that turn on proteins through a Staudinger reduction/self-immolation cascade with substantially improved kinetics and yields. We achieved this through site-specific incorporation of a new set of azidobenzyloxycarbonyl lysine derivatives in mammalian cells. This approach allowed us to activate proteins by adding a nontoxic, bioorthogonal phosphine trigger. We applied this methodology to control a post-translational modification (SUMOylation) in live cells, using native modification machinery. This work significantly improves the rate, yield, and tunability of the Staudinger reduction-based activation, paving the way for its application in other proteins and organisms.


Assuntos
Lisina/metabolismo , Fosfinas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Células HEK293 , Humanos , Cinética , Lisina/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Células NIH 3T3 , Imagem Óptica , Fosfinas/química , Bibliotecas de Moléculas Pequenas/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...