Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(11): 116002, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774302

RESUMO

The extremely overdoped cuprates are generally considered to be Fermi liquid metals without exotic orders, whereas the underdoped cuprates harbor intertwined states. Contrary to this conventional wisdom, using Cu L_{3}-edge and O K-edge resonant x-ray scattering, we reveal a charge order (CO) correlation in overdoped La_{2-x}Sr_{x}CuO_{4} (0.35≤x≤0.6) beyond the superconducting dome. This CO has a periodicity of ∼6 lattice units with correlation lengths of ∼20 lattice units. It shows similar in-plane momentum and polarization dependence and dispersive excitations as the CO of underdoped cuprates, but its maximum intensity differs along the c direction and persists up to 300 K. This CO correlation cannot be explained by the Fermi surface instability and its origin remains to be understood. Our results suggest that CO is prevailing in the overdoped metallic regime and requires a reassessment of the picture of overdoped cuprates as weakly correlated Fermi liquids.

2.
Adv Sci (Weinh) ; 10(10): e2203239, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36802132

RESUMO

The recent realizations of the quantum anomalous Hall effect (QAHE) in MnBi2 Te4 and MnBi4 Te7 benchmark the (MnBi2 Te4 )(Bi2 Te3 )n family as a promising hotbed for further QAHE improvements. The family owes its potential to its ferromagnetically (FM) ordered MnBi2 Te4 septuple layers (SLs). However, the QAHE realization is complicated in MnBi2 Te4 and MnBi4 Te7 due to the substantial antiferromagnetic (AFM) coupling between the SLs. An FM state, advantageous for the QAHE, can be stabilized by interlacing the SLs with an increasing number n of Bi2 Te3 quintuple layers (QLs). However, the mechanisms driving the FM state and the number of necessary QLs are not understood, and the surface magnetism remains obscure. Here, robust FM properties in MnBi6 Te10 (n = 2) with Tc ≈ 12 K are demonstrated and their origin is established in the Mn/Bi intermixing phenomenon by a combined experimental and theoretical study. The measurements reveal a magnetically intact surface with a large magnetic moment, and with FM properties similar to the bulk. This investigation thus consolidates the MnBi6 Te10 system as perspective for the QAHE at elevated temperatures.

3.
Phys Rev Lett ; 127(20): 207201, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860034

RESUMO

We quantify the presence of spin-mixed states in ferromagnetic 3D transition metals by precise measurement of the orbital moment. While central to phenomena such as Elliot-Yafet scattering, quantification of the spin-mixing parameter has hitherto been confined to theoretical calculations. We demonstrate that this information is also available by experimental means. Comparison of ferromagnetic resonance spectroscopy with x-ray magnetic circular dichroism results show that Kittel's original derivation of the spectroscopic g factor requires modification, to include spin mixing of valence band states. Our results are supported by ab initio relativistic electronic structure theory.

4.
Adv Mater ; 33(42): e2102935, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34469013

RESUMO

Ferromagnetic topological insulators exhibit the quantum anomalous Hall effect, which is potentially useful for high-precision metrology, edge channel spintronics, and topological qubits.  The stable 2+ state of Mn enables intrinsic magnetic topological insulators. MnBi2 Te4 is, however, antiferromagnetic with 25 K Néel temperature and is strongly n-doped. In this work, p-type MnSb2 Te4 , previously considered topologically trivial, is shown to be a ferromagnetic topological insulator for a few percent Mn excess. i) Ferromagnetic hysteresis with record Curie temperature of 45-50 K, ii) out-of-plane magnetic anisotropy, iii) a 2D Dirac cone with the Dirac point close to the Fermi level, iv) out-of-plane spin polarization as revealed by photoelectron spectroscopy, and v) a magnetically induced bandgap closing at the Curie temperature, demonstrated by scanning tunneling spectroscopy (STS), are shown. Moreover, a critical exponent of the magnetization ß ≈ 1 is found, indicating the vicinity of a quantum critical point. Ab initio calculations reveal that Mn-Sb site exchange provides the ferromagnetic interlayer coupling and the slight excess of Mn nearly doubles the Curie temperature. Remaining deviations from the ferromagnetic order open the inverted bulk bandgap and render MnSb2 Te4 a robust topological insulator and new benchmark for magnetic topological insulators.

5.
Sci Rep ; 11(1): 15843, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349172

RESUMO

Decoration with Pd clusters increases the magnetic heating ability of cobalt ferrite (CFO) nanoparticles by a factor of two. The origin of this previous finding is unraveled by element-specific X-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD) combined with atomic multiplet simulations and density functional theory (DFT) calculations. While the comparison of XAS spectra with atomic multiplet simulations show that the inversion degree is not affected by Pd decoration and, thus, can be excluded as a reason for the improved heating performance, XMCD reveals two interrelated responsible sources: significantly larger Fe and Co magnetic moments verify an increased total magnetization which enhances the magnetic heating ability. This is accompanied by a remarkable change in the field-dependent magnetization particularly for Co ions which exhibit an increased low-field susceptibility and a reduced spin canting behavior in higher magnetic fields. Using DFT calculations, these findings are explained by reduced superexchange between ions on octahedral lattice sites via oxygen in close vicinity of Pd, which reinforces the dominating antiparallel superexchange interaction between ions on octahedral and tetrahedral lattice sites and thus reduces spin canting. The influence of the delocalized nature of Pd 4d electrons on the neighboring ions is discussed and the conclusions are illustrated with spin density isosurfaces of the involved ions. The presented results pave the way to design nanohybrids with tailored electronic structure and magnetic properties.

6.
Adv Sci (Weinh) ; 8(5): 2000777, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717832

RESUMO

Tremendous progress in the development of single molecule magnets (SMMs) raises the question of their device integration. On this route, understanding the properties of low-dimensional assemblies of SMMs, in particular in contact with electrodes, is a necessary but difficult step. Here, it is shown that fullerene SMM self-assembled on metal substrate from solution retains magnetic hysteresis up to 10 K. Fullerene-SMM DySc2N@C80 and Dy2ScN@C80 are derivatized to introduce a thioacetate group, which is used to graft SMMs on gold. Magnetic properties of grafted SMMs are studied by X-ray magnetic circular dichroism and compared to the films of nonderivatized fullerenes prepared by sublimation. In self-assembled films, the magnetic moments of the Dy ions are preferentially aligned parallel to the surface, which is different from the disordered orientation of endohedral clusters in nonfunctionalized fullerenes. Whereas chemical derivatization reduces the blocking temperature of magnetization and narrows the hysteresis of Dy2ScN@C80, for DySc2N@C80 equally broad hysteresis is observed as in the fullerene multilayer. Magnetic bistability in the DySc2N@C80 grafted on gold is sustained up to 10 K. This study demonstrates that self-assembly of fullerene-SMM derivatives offers a facile solution-based procedure for the preparation of functional magnetic sub-monolayers with excellent SMM performance.

7.
ACS Appl Mater Interfaces ; 12(12): 14484-14494, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32129067

RESUMO

Effective manipulation of the magnetic properties of nanostructured metallic alloys, exhibiting intergrain porosity (i.e., channels) and conformally coated with insulating oxide nanolayers, with an electric field is demonstrated. Nanostructured Co-Pt films are grown by electrodeposition (ED) and subsequently coated with either AlOx or HfOx by atomic layer deposition (ALD) to promote magneto-ionic effects (i.e., voltage-driven ion migration) during electrolyte gating. Pronounced variations in coercivity (HC) and magnetic moment at saturation (mS) are found at room temperature after biasing the heterostructures. The application of a negative voltage results in a decrease of HC and an increase of mS, whereas the opposite trend is achieved for positive voltages. Although magneto-ionic phenomena are already observed in uncoated Co-Pt films (because of the inherent presence of oxygen), the ALD oxide nanocoatings serve to drastically enhance the magneto-ionic effects because of partially reversible oxygen migration, driven by voltage, across the interface between AlOx or HfOx and the nanostructured Co-Pt film. Co-Pt/HfOx heterostructures exhibit the most significant magneto-electric response at negative voltages, with an increase of mS up to 76% and a decrease of HC by 58%. The combination of a nanostructured magnetic alloy and a skinlike insulating oxide nanocoating is shown to be appealing to enhance magneto-ionic effects, potentially enabling electrolyte-gated magneto-ionic technology.

8.
Adv Mater ; 32(10): e1906725, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31997471

RESUMO

SmB6 has recently attracted considerable interest as a candidate for the first strongly correlated topological insulator. Such materials promise entirely new properties such as correlation-enhanced bulk bandgaps or a Fermi surface from spin excitations. Whether SmB6 and its surface states are topological or trivial is still heavily disputed however, and a solution is hindered by major disagreement between angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM) results. Here, a combined ARPES and STM experiment is conducted. It is discovered that the STM contrast strongly depends on the bias voltage and reverses its sign beyond 1 V. It is shown that the understanding of this contrast reversal is the clue to resolving the discrepancy between ARPES and STM results. In particular, the scanning tunneling spectra reflect a low-energy electronic structure at the surface, which supports a trivial origin of the surface states and the surface metallicity of SmB6 .

9.
Nanoscale ; 11(22): 10615-10621, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31139784

RESUMO

Single-molecule magnets exhibit magnetic ordering due to exchange coupling between localized spin components that makes them primary candidates as nanometric spintronic elements. Here we manipulate exchange interactions within a single-molecule magnet by nanometric structural confinement, exemplified with single-wall carbon nanotubes that encapsulate trimetric nickel(ii) acetylacetonate hosting three frustrated spins. It is revealed from bulk and Ni 3d orbital magnetic susceptibility measurements that the carbon tubular confinement allows a unique one-dimensional arrangement of the trimer in which the nearest-neighbour exchange is reversed from ferromagnetic to antiferromagnetic, resulting in quenched frustration as well as the Pauli paramagnetism is enhanced. The exchange reversal and enhanced spin delocalisation demonstrate the means of mechanically and electrically manipulating molecular magnetism at the nanoscale for nano-mechatronics and spintronics.

10.
Nanotechnology ; 30(5): 054001, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499464

RESUMO

In the present work, millisecond-range flash lamp annealing is used to recrystallize Mn-implanted Ge. Through systematic investigations of structural and magnetic properties, we find that the flash lamp annealing produces a phase mixture consisting of spinodally decomposed Mn-rich ferromagnetic clusters within a paramagnetic-like matrix with randomly distributed Mn atoms. Increasing the annealing energy density from 46, via 50, to 56 J cm-2 causes the segregation of Mn atoms into clusters, as proven by transmission electron microscopy analysis and quantitatively confirmed by magnetization measurements. According to x-ray absorption spectroscopy, the dilute Mn ions within Ge are in d 5 electronic configuration. This Mn-doped Ge shows paramagnetism, as evidenced by the unsaturated magnetic-field-dependent x-ray magnetic circular dichroism signal. Our study reveals how spinodal decomposition occurs and influences the formation of ferromagnetic Mn-rich Ge-Mn nanoclusters.

11.
ACS Appl Mater Interfaces ; 10(51): 44897-44905, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30520631

RESUMO

A synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented. The investigated material consists of an ordered array of Co-Pt microdisks, in which nanoporosity and partial oxidation are introduced during the synthetic procedure to synergetically boost the effects of electric field. The microdisks are grown by electrodeposition from an electrolyte containing an amphiphilic polymeric surfactant. The bath formulation is designed to favor the incorporation of oxygen in the form of cobalt oxide. A pronounced reduction of coercivity (88%) and a remarkable increase of Kerr signal amplitude (60%) are observed at room temperature upon subjecting the microdisks to negative voltages through an electrical double layer. These large voltage-induced changes in the magnetic properties of the microdisks are due to (i) the high surface-area-to-volume ratio with ultranarrow pore walls (sub-10 nm) that promote enhanced electric charge accumulation and (ii) magneto-ionic effects, where voltage-driven O2- migration promotes a partial reduction of CoO to Co at room temperature. This simple and versatile procedure to fabricate patterned "nano-in-micro" magnetic motifs with adjustable voltage-driven magnetic properties is very appealing for energy-efficient magnetic recording systems and other magnetoelectronic devices.

12.
Nat Commun ; 9(1): 2984, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061654

RESUMO

Cooperative effects determine the spin-state bistability of spin-crossover molecules (SCMs). Herein, the ultimate scale limit at which cooperative spin switching becomes effective is investigated in a complex [Fe(H2B(pz)2)2(bipy)] deposited on a highly oriented pyrolytic graphite surface, using x-ray absorption spectroscopy. This system exhibits a complete thermal- and light-induced spin transition at thicknesses ranging from submonolayers to multilayers. On increasing the coverage from 0.35(4) to 10(1) monolayers, the width of the temperature-induced spin transition curve narrows significantly, evidencing the buildup of cooperative effects. While the molecules at the submonolayers exhibit an apparent anticooperative behavior, the multilayers starting from a double-layer exhibit a distinctly cooperative spin switching, with a free-molecule-like behavior indicated at around a monolayer. These observations will serve as useful guidelines in designing SCM-based devices.

13.
Nanomaterials (Basel) ; 7(11)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068367

RESUMO

The origin of magnetism in wide-gap semiconductors doped with non-ferromagnetic 3d transition metals still remains intriguing. In this article, insights in the magnetic properties of ordered mesoporous Cu-doped SnO2 powders, prepared by hard-templating, have been unraveled. Whereas, both oxygen vacancies and Fe-based impurity phases could be a plausible explanation for the observed room temperature ferromagnetism, the low temperature magnetism is mainly and unambiguously arising from the nanoscale nature of the formed antiferromagnetic CuO, which results in a net magnetization that is reminiscent of ferromagnetic behavior. This is ascribed to uncompensated spins and shape-mediated spin canting effects. The reduced blocking temperature, which resides between 30 and 5 K, and traces of vertical shifts in the hysteresis loops confirm size effects in CuO. The mesoporous nature of the system with a large surface-to-volume ratio likely promotes the occurrence of uncompensated spins, spin canting, and spin frustration, offering new prospects in the use of magnetic semiconductors for energy-efficient spintronics.

14.
J Phys Condens Matter ; 29(39): 394003, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28685708

RESUMO

For probing the nature of spin-state switching in spin-crossover molecules adsorbed on surfaces, x-ray absorption spectroscopy has emerged as a powerful tool due to its high sensitivity and element selectivity in tracing even subtle electronic, magnetic, or chemical changes. However, the x-rays itself can induce a spin transition and might have unwanted influence while investigating the effect of other stimuli such as temperature or light, or of the surface, on the spin switching behaviour. Herein, we present the spin switching of an Fe(II) complex adsorbed on a highly oriented pyrolytic graphite surface with particular emphasis on the x-ray-induced switching. For a submonolayer coverage, the complex undergoes a complete and reversible temperature- and light-induced spin transition. The spin states are switched both ways by x-rays at 5 K, i.e. from the high-spin state to the low-spin state or vice versa, depending on the relative amount of each species. Furthermore, we quantify the fraction of molecules undergoing soft x-ray-induced photochemistry, a process which results in an irreversible low-spin state component, for a particular exposure time. This can be greatly suppressed by reducing the beam intensity.

15.
Sci Adv ; 2(10): e1601086, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27757422

RESUMO

Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.

16.
Sci Adv ; 2(8): e1600782, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27536726

RESUMO

Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates.


Assuntos
Condutividade Elétrica , Elétrons , Modelos Teóricos , Temperatura
17.
Sci Rep ; 5: 17937, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658647

RESUMO

Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu4Sn6 is a strongly correlated material with non-trivial topology.

18.
Sci Rep ; 5: 15033, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26459370

RESUMO

Ensembles of fcc nickel nanowires have been synthesized with defined mean sizes in the interior of single-wall carbon nanotubes. The method allows the intrinsic nature of single-domain magnets to emerge with large coercivity as their size becomes as small as the exchange length of nickel. By means of X-ray magnetic circular dichroism we probe electronic interactions at nickel-carbon interfaces where nickel exhibit no hysteresis and size-dependent spin magnetic moment. A manifestation of the interacting two subsystems on a bulk scale is traced in the nanotube's magnetoresistance as explained within the framework of weak localization.

19.
ACS Nano ; 9(9): 8960-6, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26266974

RESUMO

Spin crossover (SCO) complexes possess a bistable spin state that reacts sensitively to changes in temperature or excitation with light. These effects have been well investigated in solids and solutions, while technological applications require the immobilization and contacting of the molecules at surfaces, which often results in the suppression of the SCO. We report on the thermal and light-induced SCO of [Fe(bpz)2phen] molecules in direct contact with a highly oriented pyrolytic graphite surface. We are able to switch on the magnetic moment of the molecules by illumination with green light at T = 6 K, and off by increasing the temperature to 65 K. The light-induced switching process is highly efficient leading to a complete spin conversion from the low-spin to the high-spin state within a submonolayer of molecules. [Fe(bpz)2phen] complexes immobilized on weakly interacting graphite substrates are thus promising candidates to realize the vision of an optically controlled molecular logic unit for spintronic devices.

20.
Science ; 343(6169): 393-6, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24356110

RESUMO

Besides superconductivity, copper-oxide high-temperature superconductors are susceptible to other types of ordering. We used scanning tunneling microscopy and resonant elastic x-ray scattering measurements to establish the formation of charge ordering in the high-temperature superconductor Bi2Sr2CaCu2O(8+x). Depending on the hole concentration, the charge ordering in this system occurs with the same period as those found in Y-based or La-based cuprates and displays the analogous competition with superconductivity. These results indicate the similarity of charge organization competing with superconductivity across different families of cuprates. We observed this charge ordering to leave a distinct electron-hole asymmetric signature (and a broad resonance centered at +20 milli-electron volts) in spectroscopic measurements, indicating that it is likely related to the organization of holes in a doped Mott insulator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...