Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(25)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35378521

RESUMO

This paper presents a study of the lattice dynamics in BaFe2Se3. We combined first-principle calculations, infrared measurements and a thorough symmetry analysis. Our study confirms thatPnmacannot be the space group of BaFe2Se3, even at room temperature. The phonons assignment requiresPmto be the BaFe2Se3space group, not only in the magnetic phase, but also in the paramagnetic phase at room temperature. This is due to a strong coupling between a short-range spin-order along the ladders, and the lattice degrees of freedom associated with the Fe-Fe bond length. This coupling induces a change in the bond-length pattern from an alternated trapezoidal one (as inPnma) to an alternated small/large rectangular one. Out of the two patterns, only the latter is fully compatible with the observed block-type magnetic structure. Finally, we propose a complete symmetry analysis of the BaFe2Se3phase diagram in the 0-600 K range.

2.
Sci Rep ; 8(1): 7891, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29760512

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

3.
Sci Rep ; 8(1): 1422, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362369

RESUMO

Electrical injection lasers emitting in the 1.3 µm wavelength regime based on (GaIn)As/Ga(AsSb)/(GaIn)As type-II double "W"-quantum well heterostructures grown on GaAs substrate are demonstrated. The structure is designed by applying a fully microscopic theory and fabricated using metal organic vapor phase epitaxy. Temperature-dependent electroluminescence measurements as well as broad-area edge-emitting laser studies are carried out in order to characterize the resulting devices. Laser emission based on the fundamental type-II transition is demonstrated for a 975 µm long laser bar in the temperature range between 10 °C and 100 °C. The device exhibits a differential efficiency of 41 % and a threshold current density of 1.0 kA/cm2 at room temperature. Temperature-dependent laser studies reveal characteristic temperatures of T0 = (132 ± 3) K over the whole temperature range and T1 = (159 ± 13) K between 10 °C and 70 °C and T1 = (40 ± 1) K between 80 °C and 100 °C.

4.
J Microsc ; 268(3): 259-268, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28960298

RESUMO

The atomic structure of (GaIn)As/Ga(AsSb)/(GaIn)As-'W'-type quantum well heterostructures ('W'-QWHs) is investigated by scanning transmission electron microscopy (STEM). These structures were grown by metal organic vapour phase epitaxy and are built for type-II laser systems in the infrared wavelength regime. For two samples grown at 525°C and 550°C, intensity profiles are extracted from the STEM images for each sublattice separately. These intensity profiles are compared to the one obtained from an image simulation of an ideal 'W'-QWH that is modelled in close agreement with the experiment. From the intensity profiles, the width of the different quantum wells (QWs) can be determined. Additionally, characteristics connected to the growth of the structures, such as segregation coefficients and material homogeneity, are calculated. Finally, composition profiles are derived from the STEM intensity profiles to a first approximation. For these composition profiles, the expected photoluminescence (PL) is computed based using the semiconductor luminescence equations. The PL spectra are then compared to experimental measurements for both samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...