Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Anim Sci ; 7(1): txad030, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36970313

RESUMO

Beneficial effects of pro- and prebiotics in weanling piglets are of great interest in livestock production. Similarly, the use of specific vaccines is of interest as alternative to antibiotics to reduce postweaning performance losses. The aim of this study was the assessment of the effect of a dual-strain probiotic (Bacillus subtilis and Bacillus licheniformis) and a prebiotic (fructo-oligosaccharides) as well as the additional vaccination with an autogenous inactivated Escherichia coli vaccine on the performance of newly weaned piglets after experimental infection with an enterotoxigenic E. coli. Forty piglets at the age of 28 d were randomly allotted to one of five groups: nonchallenged control (NC); challenged positive control (PC); challenged and vaccinated (CV); challenged and diet supplemented with pre- and probiotic mix (CM) and challenged, diet supplemented with pro- and prebiotic mix and vaccinated (CMV). Piglets of CV and CMV were vaccinated parenterally prior to the trial at the age of 17 d. Compared to NC, the experimental infection with E. coli resulted in a significant reduction of body weight gain in both vaccinated groups (P = 0.045), which was associated with an impaired gain to feed ratio (P = 0.012), but not feed intake. In contrast, piglets in the group supplemented with pro- and prebiotics (group CM) were able to maintain their weight and had an average daily gain, which was not significantly different from groups NC and PC. No differences regarding body weight gain, feed intake, gain to feed ratio and fecal score were observed between groups during the 3rd and 4th week of the trial. A significant impairment of fecal consistency and frequency of diarrhea was observed related to the oral challenge when comparing PC and NC treatments (P = 0.024). Neither vaccine, nor supplementation with pro- and prebiotics were able to significantly improve fecal consistency, nor did they have a positive effect on the prevalence of diarrhea. The results show no positive synergistic effect of the specific combination of vaccine and pre- and probiotics used in this trial on performance and diarrhea. The results show that the concept of a combination of a specific vaccination and a probiotic with a prebiotic needs further investigation. In the sense of avoiding the use of antibiotics, this seems to be an attractive approach.

2.
Animal ; 17(2): 100697, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621110

RESUMO

Maternal dietary factors have been reported to influence Clostridioides difficile colonisation in the offspring. Twenty suckling piglets from sows fed diets supplemented with high-fermentable sugar beet pulp (SBP) or low-fermentable lignocellulose (LNC) fibres during gestation and lactation were dissected in the first week after birth. Postmortem analysis included clinical mesocolon and faecal scoring, concentration of C. difficile and respective toxins in colon digesta and faeces, immunoglobulins in serum and inflammatory markers in serum and colon tissues. Sow colostrum was assessed for nutrients, immunoglobulins and biogenic amines. Toxin-neutralising IgG antibodies were measured in colostrum and serum of the sows, and in colon digesta and serum of the piglets. Mesocolonic oedema of different severity was present in most of the piglets from both sows' feeding groups. Concentrations of C. difficile, toxins and calprotectin in colon digesta and faecal contents did not differ between the study piglets. Calprotectin correlated positively with mesocolon score (rho = 413, P = 0.07). Piglets from sows fed LNC vs SBP tended to have higher IgA (P = 0.089), IgG (P = 0.053), total Ig (P = 0.053), albumin (P = 0.075) and total protein content (P = 0.007) in serum. Colon tissues of piglets from the SFB vs LNC had upregulated expression of ZO-1 (P = 0.021), PCNA (P = 0.015) and TGF-ß (P = 0.014). Titers of anti-toxin-IgG-antibodies in serum and colostrum and in piglet colon digesta and serum did not differ between sows from both dietary groups, but they all showed strong positive correlations. In conclusion, dietary sugar beet pulp or lignocellulose fed to sows did not influence the concentrations of C. difficile and toxins titers in colon digesta and faeces of neonatal piglets.


Assuntos
Clostridioides difficile , Gravidez , Feminino , Animais , Suínos , Leite/metabolismo , Dieta/veterinária , Colostro/metabolismo , Suplementos Nutricionais , Lactação , Imunoglobulina G , Ração Animal/análise
3.
Transl Anim Sci ; 7(1): txac169, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36655231

RESUMO

Dietary supplementation with arginine (Arg) or glutamine (Gln) has been considered as an option to improve nursing performance in reproductive sows. This study investigated whether a low-level supplementation of Arg or Gln or a blend of both could modify milk nutrients and improve piglets' growth beyond weaning. Seventy-two multiparous sows were assigned to four groups: one group fed a control diet, three treatment groups fed the control diet supplemented with either 0.35% Arg, 0.35% Gln, or both, from day 108 of gestation until weaning at day 26 of lactation. Immediately after birth, the litters were cross fostered to 13 piglets and monitored until 2 wk after weaning. Sows body condition and litter growth were assessed. Colostrum and milk samples were collected for nutrient analyses. Plasma concentrations of insulin-like growth factor 1 (IGF-1) around weaning were determined in sows and two representative piglets per litter. Supplementing Gln or the combination of Arg and Gln had no effect on the parameters studied. Arg supplementation increased weaning weight, while decreasing the variation of piglet weights 2 wk after weaning. There was no correlation with plasma IGF-1 since the hormone was not altered in sows or piglets. The colostral concentration of fat tended to increase in the Arg-group, whereas protein, lactose, energy, and polyamine concentrations remained unaffected. Milk samples obtained on day 12 and 25 of lactation were not influenced by dietary treatment. The data indicate that there might be a window of opportunity, explicitly at the onset of lactation, for dietary intervention by maternal dietary Arg supplementation.

4.
Microorganisms ; 10(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35889024

RESUMO

With the advancement of microbiome research, the requirement to consider the intestinal microbiome as the "last organ" of an animal emerged. Through the production of metabolites and/or the stimulation of the host's hormone and neurotransmitter synthesis, the gut microbiota can potentially affect the host's eating behavior both long and short-term. Based on current evidence, the major mediators appear to be short-chain fatty acids (SCFA), peptide hormones such as peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), as well as the amino acid tryptophan with the associated neurotransmitter serotonin, dopamine and γ-Aminobutyrate (GABA). The influence appears to extend into central neuronal networks and the expression of taste receptors. An interconnection of metabolic processes with mechanisms of taste sensation suggests that the gut microbiota may even influence the sensations of their host. This review provides a summary of the current status of microbiome research in farm animals with respect to general appetite regulation and microbiota-related observations made on the influence on feed intake. This is briefly contrasted with the existing findings from research with rodent models in order to identify future research needs. Increasing our understanding of appetite regulation could improve the management of feed intake, feed frustration and anorexia related to unhealthy conditions in farm animals.

5.
Curr Microbiol ; 79(5): 154, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397071

RESUMO

Dietary fiber has a potential to modulate the gut microbiota in sows. We hypothesized that a maternal diet rich in either high- or low-fermentable fiber during gestation and lactation influences Clostridioides difficile gut colonization in suckling piglets. Twenty sows were fed gestation and lactation diets enriched with either high-fermentable sugar beet pulp (SBP) or low-fermentable lignocellulose (LNC) fibers. C. difficile, toxin B (TcdB), fecal score, microbial abundance (16S-rDNA sequencing) and metabolites were measured in the feces from the sows and their piglets. C. difficile concentration was higher in piglets from the sows fed LNC than SBP along the study (P ≤ 0.05). Higher prevalence of C. difficile was noted in three-week-old piglets from sows fed LNC vs. SBP (45% vs. 0%, P = 0.001). TcdB prevalence was higher in six-day-old piglets from the sows fed LNC vs. SBP (60% vs. 17%, P = 0.009). In sows, fecal microbial metabolites were higher in SBP than LNC, while C. difficile concentration showed no difference. Higher microbial diversity Shannon index was noted in sows from SBP vs. LNC one week before parturition and at the parturition (P ≤ 0.05). Piglets from SBP vs. LNC tended to have higher microbial diversity Shannon index at two and three weeks of age. Diets enriched with high-fermentable fiber compared to low-fermentable fiber in sows reduced C. difficile colonization in their piglets. Susceptibility to colonization by C. difficile in neonatal piglets can be modulated by the sows' diet, supporting the hypothesis of the early microbial programming in the offspring and the importance of the sow-piglet couple.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Ração Animal/análise , Animais , Dieta/veterinária , Fibras na Dieta/metabolismo , Suplementos Nutricionais , Feminino , Lactação , Suínos , Verduras
6.
Animals (Basel) ; 12(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011215

RESUMO

This study aimed to investigate the effect of fiber-rich rye and rapeseed meal (RSM) compared to wheat and soybean meal (SBM) on fiber digestibility and the composition and metabolic activity of intestinal microbiota. At weaning, 88 piglets were allocated to four feeding groups: wheat/SBM, wheat/RSM, rye/SBM, and rye/RSM. Dietary inclusion level was 48% for rye and wheat, 25% for SBM, and 30% for RSM. Piglets were euthanized after 33 days for collection of digesta and feces. Samples were analyzed for dry matter and non-starch-polysaccharide (NSP) digestibility, bacterial metabolites, and relative abundance of microbiota. Rye-based diets had higher concentrations of soluble NSP than wheat-based diets. RSM-diets were higher in insoluble NSP compared to SBM. Rye-fed piglets showed a higher colonic and fecal digestibility of NSP (p < 0.001, p = 0.001, respectively). RSM-fed piglets showed a lower colonic and fecal digestibility of NSP than SBM-fed piglets (p < 0.001). Rye increased jejunal and colonic concentration of short-chain fatty acids (SCFA) compared to wheat (p < 0.001, p = 0.016, respectively). RSM-fed pigs showed a lower jejunal concentration of SCFA (p = 0.001) than SBM-fed pigs. Relative abundance of Firmicutes was higher (p = 0.039) and of Proteobacteria lower (p = 0.002) in rye-fed pigs compared to wheat. RSM reduced Firmicutes and increased Actinobacteria (jejunum, colon, feces: p < 0.050), jejunal Proteobacteria (p = 0.019) and colonic Bacteroidetes (p = 0.014). Despite a similar composition of the colonic microbiota, the higher amount and solubility of NSP from rye resulted in an increased fermentative activity compared to wheat. The high amount of insoluble dietary fiber in RSM-based diets reduced bacterial metabolic activity and caused a shift toward insoluble fiber degrading bacteria. Further research should focus on host-microbiota interaction to improve feeding concepts with a targeted use of dietary fiber.

7.
Transl Anim Sci ; 5(4): txab209, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34805771

RESUMO

Weaning is a challenging period for piglets associated with reduced feed intake, impairment of gut integrity, and diarrhea. Previous studies demonstrate that supplementation with single functional amino acids (AA) promote piglets' performance due to the improvement of intestinal health. Thus, we hypothesized that a combination of functional AA provided beyond the postulated requirement for growth could facilitate the weaning transition. Ninety piglets, initially stressed after weaning by 100 min overland transport, received a control diet or the same diet supplemented with a low-dosed (0.3%) mixture of AA (AAB-1: L-arginine, L-leucine, L-valine, L-isoleucine, L-cystine; AAB-2: L-arginine, L-leucine, L-valine, L-isoleucine, L-cystine, and L-tryptophan) for 28 days. Fecal consistency was ranked daily, growth performance was assessed weekly. On days 1 and 14 of the trial, blood samples were collected from a subset of 10 piglets per group to assess concentrations of insulin-like growth factor 1. After 28 days of feeding, tissues were obtained from the same piglets to analyze gut morphology and relative mRNA expression of genes related to gut function. Even if the stress response as indicated by rectal temperature was not different between the groups, pigs supplemented with AAB-2 showed firmer feces after weaning and less days with diarrhea compared to control. Furthermore, the jejunal expression of the MUC-2 gene was reduced (P < 0.05) in group AAB-2. Both AA mixtures increased crypt depth in the duodenum. Collectively, the given results indicate that 0.3% extra AA supplementation might alleviate postweaning diarrhea but did not alter growth performance of weanling piglets.

8.
J Anim Sci ; 97(10): 4282-4292, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31410464

RESUMO

An experiment was conducted to test the hypothesis that excess dietary Leu affects metabolism of branched-chain amino acids (BCAA) in growing pigs. Forty barrows (initial body weight [BW]: 30.0 ± 2.7 kg) were housed individually in metabolism crates and allotted to 5 dietary treatments (8 replicates per treatment) in a randomized complete block design. The 5 diets were based on identical quantities of corn, soybean meal, wheat, and barley and designed to contain 100%, 150%, 200%, 250%, or 300% of the requirement for standardized ileal digestible Leu. Initial and final (day 15) BW of pigs were recorded. Daily feed consumption was also recorded. Urine and fecal samples were collected for 5 d following 7 d of adaptation to the diets. At the end of the experiment, blood and tissue samples were collected to analyze plasma urea N (PUN), plasma and hypothalamic serotonin, tissue BCAA, serum and tissue branched-chain α-keto acids, and messenger ribonucleic acid abundance of genes involved in BCAA metabolism. Results indicated that acid detergent fiber, average daily feed intake, and gain-to-feed ratio decreased (linear, P < 0.05) as dietary Leu increased. A trend (linear, P = 0.082) for decreased N retention and decreased (linear, P < 0.05) biological value of dietary protein was also observed, and PUN increased (linear, P < 0.05) as dietary Leu increased. A quadratic reduction (P < 0.05) in plasma serotonin and a linear reduction (P < 0.05) in hypothalamic serotonin were observed with increasing dietary Leu. Concentrations of BCAA in liver increased (linear, P < 0.001), whereas concentrations of BCAA in skeletal muscle decreased (linear, P < 0.05) as dietary Leu increased. Concentration of α-ketoisovalerate was reduced (linear and quadratic, P < 0.001) in liver, skeletal muscle, and serum, and α-keto-ß-methylvalerate was reduced (linear, P < 0.001; quadratic, P < 0.001) in skeletal muscle and serum. In contrast, α-keto isocaproate increased (linear, P < 0.05) in liver and skeletal muscle and also in serum (linear and quadratic, P < 0.001) with increasing dietary Leu. Expression of mitochondrial BCAA transaminase and of the E1α subunit of branched-chain α-keto acid dehydrogenase increased (linear, P < 0.05) in skeletal muscle as dietary Leu increased. In conclusion, excess dietary Leu impaired growth performance and nitrogen retention, which is likely a result of increased catabolism of Ile and Val, which in turn reduces availability of these amino acids resulting in reduced protein retention, and excess dietary Leu also reduced hypothalamic serotonin synthesis.


Assuntos
Proteínas Alimentares/metabolismo , Suplementos Nutricionais/análise , Leucina/administração & dosagem , Serotonina/biossíntese , Suínos/fisiologia , Aminoácidos de Cadeia Ramificada/metabolismo , Ração Animal/análise , Animais , Nitrogênio da Ureia Sanguínea , Peso Corporal/efeitos dos fármacos , Dieta/veterinária , Íleo/metabolismo , Cetoácidos/metabolismo , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Distribuição Aleatória , Serotonina/genética , Suínos/genética , Suínos/crescimento & desenvolvimento
9.
PLoS One ; 11(3): e0150376, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930301

RESUMO

In addition to its role as an essential protein component, leucine (Leu) displays several other metabolic functions such as activation of protein synthesis. This property makes it an interesting amino acid for the therapy of human muscle atrophy and for livestock production. However, Leu can stimulate its own degradation via the branched-chain keto acid dehydrogenase complex (BCKDH). To examine the response of several tissues to excessive Leu, pigs were fed diets containing two- (L2) and four-fold (L4) higher Leu contents than the recommended amount (control). We found that the L4 diet led to a pronounced increase in BCKDH activity in the brain (2.5-fold, P < 0.05), liver (1.8-fold, P < 0.05) and cardiac muscle (1.7-fold, P < 0.05), whereas we found no changes in enzyme activity in the pancreas, skeletal muscle, adipose tissue and intestinal mucosa. The L2 diet had only weak effects on BCKDH activity. Both high Leu diets reduced the concentrations of free valine and isoleucine in nearly all tissues. In the brain, high Leu diets modified the amount of tryptophan available: for serotonin synthesis. Compared to the controls, pigs treated with the high Leu diets consumed less food, showed increased plasma concentrations of 3-hydroxybutyrate and reduced levels of circulating serotonin. In conclusion, excessive Leu can stimulate BCKDH activity in several tissues, including the brain. Changes in cerebral tryptophan, along with the changes in amino acid-derived metabolites in the plasma may limit the use of high Leu diets to treat muscle atrophy or to increase muscle growth.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Encéfalo/metabolismo , Corpos Cetônicos/metabolismo , Leucina/metabolismo , Serotonina/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Animais , Dieta/métodos , Feminino , Mucosa Intestinal/metabolismo , Isoleucina/metabolismo , Cetoácidos/metabolismo , Fígado/metabolismo , Masculino , Modelos Animais , Miocárdio/metabolismo , Suínos , Valina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...