Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495024

RESUMO

Regulation of mitochondrial oxidative phosphorylation is essential to match energy supply to changing cellular energy demands, and to cope with periods of hypoxia. Recent work implicates the circadian molecular clock in control of mitochondrial function and hypoxia sensing. Because diving mammals experience intermittent episodes of severe hypoxia, with diel patterning in dive depth and duration, it is interesting to consider circadian-mitochondrial interaction in this group. Here, we demonstrate that the hooded seal (Cystophora cristata), a deep-diving Arctic pinniped, shows strong daily patterning of diving behaviour in the wild. Cultures of hooded seal skin fibroblasts exhibit robust circadian oscillation of the core clock genes per2 and arntl. In liver tissue collected from captive hooded seals, expression of arntl was some 4-fold higher in the middle of the night than in the middle of the day. To explore the clock-mitochondria relationship, we measured the mitochondrial oxygen consumption in synchronized hooded seal skin fibroblasts and found a circadian variation in mitochondrial activity, with higher coupling efficiency of complex I coinciding with the trough of arntl expression. These results open the way for further studies of circadian-hypoxia interactions in pinnipeds during diving.


Assuntos
Caniformia , Focas Verdadeiras , Animais , Encéfalo/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Mamíferos/metabolismo , Hipóxia/metabolismo , Focas Verdadeiras/fisiologia , Mitocôndrias/metabolismo
2.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031958

RESUMO

The polar regions receive less solar energy than anywhere else on Earth, with the greatest year-round variation in daily light exposure; this produces highly seasonal environments, with short summers and long, cold winters. Polar environments are also characterised by a reduced daily amplitude of solar illumination. This is obvious around the solstices, when the Sun remains continuously above (polar 'day') or below (polar 'night') the horizon. Even at the solstices, however, light levels and spectral composition vary on a diel basis. These features raise interesting questions about polar biological timekeeping from the perspectives of function and causal mechanism. Functionally, to what extent are evolutionary drivers for circadian timekeeping maintained in polar environments, and how does this depend on physiology and life history? Mechanistically, how does polar solar illumination affect core daily or seasonal timekeeping and light entrainment? In birds and mammals, answers to these questions diverge widely between species, depending on physiology and bioenergetic constraints. In the high Arctic, photic cues can maintain circadian synchrony in some species, even in the polar summer. Under these conditions, timer systems may be refined to exploit polar cues. In other instances, temporal organisation may cease to be dominated by the circadian clock. Although the drive for seasonal synchronisation is strong in polar species, reliance on innate long-term (circannual) timer mechanisms varies. This variation reflects differing year-round access to photic cues. Polar chronobiology is a productive area for exploring the adaptive evolution of daily and seasonal timekeeping, with many outstanding areas for further investigation.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Ritmo Circadiano/fisiologia , Aves/fisiologia , Regiões Árticas , Mamíferos , Estações do Ano
3.
Front Immunol ; 12: 669889, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017342

RESUMO

Anadromous salmonids begin life adapted to the freshwater environments of their natal streams before a developmental transition, known as smoltification, transforms them into marine-adapted fish. In the wild, smoltification is a photoperiod-regulated process, involving radical remodeling of gill function to cope with the profound osmotic and immunological challenges of seawater (SW) migration. While prior work has highlighted the role of specialized "mitochondrion-rich" cells (MRCs) and accessory cells (ACs) in delivering this phenotype, recent RNA profiling experiments suggest that remodeling is far more extensive than previously appreciated. Here, we use single-nuclei RNAseq to characterize the extent of cytological changes in the gill of Atlantic salmon during smoltification and SW transfer. We identify 20 distinct cell clusters, including known, but also novel gill cell types. These data allow us to isolate cluster-specific, smoltification-associated changes in gene expression and to describe how the cellular make-up of the gill changes through smoltification. As expected, we noted an increase in the proportion of seawater mitochondrion-rich cells, however, we also identify previously unknown reduction of several immune-related cell types. Overall, our results provide fresh detail of the cellular complexity in the gill and suggest that smoltification triggers unexpected immune reprogramming.


Assuntos
Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Brânquias/imunologia , Salmo salar/genética , Salmo salar/imunologia , Análise de Célula Única , Transcriptoma , Migração Animal , Animais , Regulação da Expressão Gênica , Brânquias/citologia , RNA-Seq , Tolerância ao Sal , Água do Mar
4.
Curr Biol ; 31(12): 2720-2727.e5, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33930302

RESUMO

The high Arctic archipelago of Svalbard (74°-81° north) experiences extended periods of uninterrupted daylight in summer and uninterrupted night in winter, apparently relaxing the major driver for the evolution of circadian rhythmicity. Svalbard ptarmigan (Lagopus muta hyperborea) is the only year-round resident terrestrial bird species endemic to the high Arctic and is remarkably adapted to the extreme annual variation in environmental conditions.1 Here, we demonstrate that, although circadian control of behavior disappears rapidly upon transfer to constant light conditions, consistent with the loss of daily activity patterns observed during the polar summer and polar night, Svalbard ptarmigans nonetheless employ a circadian-based mechanism for photoperiodic timekeeping. First, we show the persistence of rhythmic clock gene expression under constant light within the mediobasal hypothalamus and pars tuberalis, the key tissues in the seasonal neuroendocrine cascade. We then employ a "sliding skeleton photoperiod" protocol, revealing that the driving force behind seasonal biology of the Svalbard ptarmigan is rhythmic sensitivity to light, a feature that depends on a functioning circadian rhythm. Hence, the unusual selective pressures of life in the high Arctic have favored decoupling of the circadian clock from organization of daily activity patterns, while preserving its importance for seasonal synchronization.


Assuntos
Relógios Circadianos , Fotoperíodo , Animais , Aves , Ritmo Circadiano , Estações do Ano , Svalbard
5.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33710311

RESUMO

The developmental transition of juvenile salmon from a freshwater resident morph (parr) to a seawater (SW) migratory morph (smolt), known as smoltification, entails a reorganization of gill function to cope with the altered water environment. Recently, we used RNAseq to characterize the breadth of transcriptional change which takes place in the gill in the FW phase of smoltification. This highlighted the importance of extended exposure to short, winter-like photoperiods (SP) followed by a subsequent increase in photoperiod for completion of transcriptional reprogramming in FW and efficient growth following transfer to SW. Here, we extend this analysis to examine the consequences of this photoperiodic history-dependent reprogramming for subsequent gill responses upon exposure to SW. We use RNAseq to analyze gill samples taken from fish raised on the photoperiod regimes we used previously and then challenged by SW exposure for 24 hours. While fish held on constant light (LL) throughout were able to hypo-osmoregulate during a 24 hours SW challenge, the associated gill transcriptional response was highly distinctive from that in fish which had experienced a 7-week period of exposure to SP followed by a return to LL (SPLL) and had consequently acquired the characteristics of fully developed smolts. Fish transferred from LL to SP, and then held on SP for the remainder of the study was unable to hypo-osmoregulate, and the associated gill transcriptional response to SW exposure featured many transcripts apparently regulated by the glucocorticoid stress axis and by the osmo-sensing transcription factor NFAT5. The importance of these pathways for the gill transcriptional response to SW exposure appears to diminish as a consequence of photoperiod mediated induction of the smolt phenotype, presumably reflecting preparatory developmental changes taking place during this process.


Assuntos
Fotoperíodo , Salmo salar , Animais , Água Doce , Brânquias , Salmo salar/genética , Água do Mar
6.
PLoS Genet ; 16(10): e1009097, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33031398

RESUMO

Across taxa, circadian control of physiology and behavior arises from cell-autonomous oscillations in gene expression, governed by a networks of so-called 'clock genes', collectively forming transcription-translation feedback loops. In modern vertebrates, these networks contain multiple copies of clock gene family members, which arose through whole genome duplication (WGD) events during evolutionary history. It remains unclear to what extent multiple copies of clock gene family members are functionally redundant or have allowed for functional diversification. We addressed this problem through an analysis of clock gene expression in the Atlantic salmon, a representative of the salmonids, a group which has undergone at least 4 rounds of WGD since the base of the vertebrate lineage, giving an unusually large complement of clock genes. By comparing expression patterns across multiple tissues, and during development, we present evidence for gene- and tissue-specific divergence in expression patterns, consistent with functional diversification of clock gene duplicates. In contrast to mammals, we found no evidence for coupling between cortisol and circadian gene expression, but cortisol mediated non-circadian regulated expression of a subset of clock genes in the salmon gill was evident. This regulation is linked to changes in gill function necessary for the transition from fresh- to sea-water in anadromous fish. Overall, this analysis emphasises the potential for a richly diversified clock gene network to serve a mixture of circadian and non-circadian functions in vertebrate groups with complex genomes.


Assuntos
Relógios Circadianos/genética , Evolução Molecular , Duplicação Gênica/genética , Salmo salar/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Genoma/genética , Filogenia
7.
J Exp Biol ; 223(Pt 16)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32587064

RESUMO

Organisms use changes in photoperiod to anticipate and exploit favourable conditions in a seasonal environment. While species living at temperate latitudes receive day length information as a year-round input, species living in the Arctic may spend as much as two-thirds of the year without experiencing dawn or dusk. This suggests that specialised mechanisms may be required to maintain seasonal synchrony in polar regions. Svalbard ptarmigan (Lagopus muta hyperborea) are resident at 74-81°N latitude. They spend winter in constant darkness (DD) and summer in constant light (LL); extreme photoperiodic conditions under which they do not display overt circadian rhythms. Here, we explored how Arctic adaptation in circadian biology affects photoperiodic time measurement in captive Svalbard ptarmigan. For this purpose, DD-adapted birds, showing no circadian behaviour, either remained in prolonged DD, were transferred into a simulated natural photoperiod (SNP) or were transferred directly into LL. Birds transferred from DD to LL exhibited a strong photoperiodic response in terms of activation of the hypothalamic thyrotropin-mediated photoperiodic response pathway. This was assayed through expression of the Eya3, Tshß and deiodinase genes, as well as gonadal development. While transfer to SNP established synchronous diurnal activity patterns, activity in birds transferred from DD to LL showed no evidence of circadian rhythmicity. These data show that the Svalbard ptarmigan does not require circadian entrainment to develop a photoperiodic response involving conserved molecular elements found in temperate species. Further studies are required to define how exactly Arctic adaptation modifies seasonal timer mechanisms.


Assuntos
Ritmo Circadiano , Fotoperíodo , Animais , Regiões Árticas , Aves , Estações do Ano , Svalbard
8.
Nat Commun ; 8(1): 417, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900189

RESUMO

Most organisms use internal biological clocks to match behavioural and physiological processes to specific phases of the day-night cycle. Central to this is the synchronisation of internal processes across multiple organ systems. Environmental desynchrony (e.g. shift work) profoundly impacts human health, increasing cardiovascular disease and diabetes risk, yet the underlying mechanisms remain unclear. Here, we characterise the impact of desynchrony between the internal clock and the external light-dark (LD) cycle on mammalian physiology. We reveal that even under stable LD environments, phase misalignment has a profound effect, with decreased metabolic efficiency and disrupted cardiac function including prolonged QT interval duration. Importantly, physiological dysfunction is not driven by disrupted core clock function, nor by an internal desynchrony between organs, but rather the altered phase relationship between the internal clockwork and the external environment. We suggest phase misalignment as a major driver of pathologies associated with shift work, chronotype and social jetlag.The misalignment between internal circadian rhythm and the day-night cycle can be caused by genetic, behavioural and environmental factors, and may have a profound impact on human physiology. Here West et al. show that desynchrony between the internal clock and the external environment alter metabolic parameters and cardiac function in mice.


Assuntos
Metabolismo Energético/fisiologia , Coração/fisiopatologia , Fotoperíodo , Animais , Relógios Biológicos/fisiologia , Eletrocardiografia , Regulação da Expressão Gênica , Frequência Cardíaca , Masculino , Camundongos Endogâmicos C57BL
9.
Bioessays ; 37(7): 777-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26010005

RESUMO

Coordinated daily rhythms are evident in most aspects of our physiology, driven by internal timing systems known as circadian clocks. Our understanding of how biological clocks are built and function has grown exponentially over the past 20 years. With this has come an appreciation that disruption of the clock contributes to the pathophysiology of numerous diseases, from metabolic disease to neurological disorders to cancer. However, it remains to be determined whether it is the disruption of our rhythmic physiology per se (loss of timing itself), or altered functioning of individual clock components that drive pathology. Here, we review the importance of circadian rhythms in terms of how we (and other organisms) relate to the external environment, but also in relation to how internal physiological processes are coordinated and synchronized. These issues are of increasing importance as many aspects of modern life put us in conflict with our internal clockwork.


Assuntos
Relógios Circadianos , Animais , Ritmo Circadiano , Humanos , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Núcleo Supraquiasmático/fisiopatologia
10.
Curr Biol ; 24(7): 766-73, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24656826

RESUMO

Many aspects of mammalian physiology are driven through the coordinated action of internal circadian clocks. Clock speed (period) and phase (temporal alignment) are fundamental to an organism's ability to synchronize with its environment. In humans, lifestyles that disturb these clocks, such as shift work, increase the incidence of diseases such as cancer and diabetes. Casein kinases 1δ and ε are closely related clock components implicated in period determination. However, CK1δ is so dominant in this regard that it remains unclear what function CK1ε normally serves. Here, we reveal that CK1ε dictates how rapidly the clock is reset by environmental stimuli. Genetic disruption of CK1ε in mice enhances phase resetting of behavioral rhythms to acute light pulses and shifts in light cycle. This impact of CK1ε targeting is recapitulated in isolated brain suprachiasmatic nucleus and peripheral (lung) clocks during NMDA- or temperature-induced phase shift in association with altered PERIOD (PER) protein dynamics. Importantly, accelerated re-entrainment of the circadian system in vivo and in vitro can be achieved in wild-type animals through pharmacological inhibition of CK1ε. These studies therefore reveal a role for CK1ε in stabilizing the circadian clock against phase shift and highlight it as a novel target for minimizing physiological disturbance in shift workers.


Assuntos
Relógios Circadianos/fisiologia , Animais , Caseína Quinase 1 épsilon/genética , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase 1 épsilon/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/fisiologia , Masculino , Camundongos , Fotoperíodo , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...