Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Oncotarget ; 15: 328-344, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758815

RESUMO

GZ17-6.02 has undergone phase I evaluation in patients with solid tumors (NCT03775525). The RP2D is 375 mg PO BID, with an uveal melanoma patient exhibiting a 15% reduction in tumor mass for 5 months at this dose. Studies in this manuscript have defined the biology of GZ17-6.02 in PDX isolates of uveal melanoma cells. GZ17-6.02 killed uveal melanoma cells through multiple convergent signals including enhanced ATM-AMPK-mTORC1 activity, inactivation of YAP/TAZ and inactivation of eIF2α. GZ17-6.02 significantly enhanced the expression of BAP1, predictive to reduce metastasis, and reduced the levels of ERBB family RTKs, predicted to reduce growth. GZ17-6.02 interacted with doxorubicin or ERBB family inhibitors to significantly enhance tumor cell killing which was associated with greater levels of autophagosome formation and autophagic flux. Knock down of Beclin1, ATG5 or eIF2α were more protective than knock down of ATM, AMPKα, CD95 or FADD, however, over-expression of FLIP-s provided greater protection compared to knock down of CD95 or FADD. Expression of activated forms of mTOR and STAT3 significantly reduced tumor cell killing. GZ17-6.02 reduced the expression of PD-L1 in uveal melanoma cells to a similar extent as observed in cutaneous melanoma cells whereas it was less effective at enhancing the levels of MHCA. The components of GZ17-6.02 were detected in tumors using a syngeneic tumor model. Our data support future testing GZ17-6.02 in uveal melanoma as a single agent, in combination with ERBB family inhibitors, in combination with cytotoxic drugs, or with an anti-PD1 immunotherapy.


Assuntos
Melanoma , Neoplasias Uveais , Ensaios Antitumorais Modelo de Xenoenxerto , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Melanoma/genética , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Neoplasias Uveais/genética , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
2.
Oncotarget ; 15: 159-174, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441437

RESUMO

GZ17-6.02, a synthetically manufactured compound containing isovanillin, harmine and curcumin, has undergone phase I evaluation in patients with solid tumors (NCT03775525) with a recommended phase 2 dose (RP2D) of 375 mg PO BID. GZ17-6.02 was more efficacious as a single agent at killing multiple myeloma cells than had previously been observed in solid tumor cell types. GZ17-6.02 interacted with proteasome inhibitors in a greater than additive fashion to kill myeloma cells and alone it killed inhibitor-resistant cells to a similar extent. The drug combination of GZ17-6.02 and bortezomib activated ATM, the AMPK and PERK and inactivated ULK1, mTORC1, eIF2α, NFκB and the Hippo pathway. The combination increased ATG13 S318 phosphorylation and the expression of Beclin1, ATG5, BAK and BIM, and reduced the levels of BCL-XL and MCL1. GZ17-6.02 interacted with bortezomib to enhance autophagosome formation and autophagic flux, and knock down of ATM, AMPKα, ULK1, Beclin1 or ATG5 significantly reduced both autophagy and tumor cell killing. Knock down of BAK and BIM significantly reduced tumor cell killing. The expression of HDACs1/2/3 was significantly reduced beyond that previously observed in solid tumor cells and required autophagy. This was associated with increased acetylation and methylation of histone H3. Combined knock down of HDACs1/2/3 caused activation of ATM and the AMPK and caused inactivation of ULK1, mTORC1, NFκB and the Hippo pathway. HDAC knock down also enhanced ATG13 phosphorylation, increased BAK levels and reduced those of BCL-XL. Collectively, our present studies support performing additional in vivo studies with multiple myeloma cells.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Inibidores de Proteassoma/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Bortezomib/farmacologia , Proteínas Quinases Ativadas por AMP , Proteína Beclina-1 , Antineoplásicos/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina
3.
Oncotarget ; 15: 124-133, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329728

RESUMO

GZ17-6.02, composed of curcumin, harmine and isovanillin, has undergone phase I evaluation in patients with solid tumors (NCT03775525) with an RP2D of 375 mg PO BID. The biology of GZ17-6.02 in malignant T cells and in particular those derived from mycosis fungoides (MF) patients, has not been studied. GZ17-6.02 alone and in combination with standard-of-care agents was effective in killing MF cells. All three components are necessary for optimal killing of MF cells. GZ17-6.02 activated ATM, the AMPK, NFκB and PERK and inactivated ERK1/2, AKT, ULK1, mTORC1, eIF2α, and reduced the expression of BCL-XL and MCL1. GZ17-6.02 increased ATG13 S318 phosphorylation and the expression of Beclin1, ATG5, BAK and BIM. GZ17-6.02 in a dose-dependent fashion enhanced autophagosome formation and autophagic flux, and tumor cell killing. Signaling by ATM and AMPK were both required for efficient killing but not for the dose-response effect whereas ER stress (eIF2α) and macroautophagy (Beclin1, ATG5) were required for both efficient killing and the dose-response. Knock down of the death receptor CD95 reduced killing by ~20% and interacted with autophagy inhibition to further reduce killing, collectively, by ~70%. Inhibition of autophagy and knock down of death-mediators downstream of the mitochondrion, AIF and caspase 3, almost abolished tumor cell killing. Hence in MF cells, GZ17-6.02 is a multi-factorial killer, utilizing ER stress, macroautophagy, death receptor signaling and directly causing mitochondrial dysfunction.


Assuntos
Antineoplásicos , Micose Fungoide , Neoplasias Cutâneas , Humanos , Bexaroteno/farmacologia , Proteínas Quinases Ativadas por AMP , Proteína Beclina-1/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Receptores de Morte Celular
4.
Sci Rep ; 14(1): 1955, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263212

RESUMO

Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma (CTCL). Despite having a wide variety of therapeutic agents available for the treatment of MF, patients often suffer from a significant decrease in quality of life and rarely achieve long-term remission or complete cure, highlighting a need to develop novel therapeutic agents for this disease. The present study was undertaken to evaluate the efficacy of a novel anti-tumor agent, GZ17-6.02, which is composed of curcumin, harmine, and isovanillin, against MF in vitro and in murine models. Treatment of HH and MyLa cells with GZ17-6.02 inhibited the growth of both cell lines with IC50 ± standard errors for growth inhibition of 14.37 ± 1.19 µg/mL and 14.56 ± 1.35 µg/mL, respectively, and increased the percentage of cells in late apoptosis (p = .0304 for HH; p = .0301 for MyLa). Transcriptomic and proteomic analyses revealed that GZ17-6.02 suppressed several pathways, including tumor necrosis factor (TNF)-ɑ signaling via nuclear factor (NF)-kB, mammalian target of rapamycin complex (mTORC)1, and Pi3K/Akt/mTOR signaling. In a subcutaneous tumor model, GZ17-6.02 decreased tumor volume (p = .002) and weight (p = .009) compared to control conditions. Proteomic analysis of tumor samples showed that GZ17-6.02 suppressed the expression of several proteins that may promote CTCL growth, including mitogen-activated protein kinase (MAPK)1, MAPK3, Growth factor receptor bound protein (GRB)2, and Mediator of RAP80 interactions and targeting subunit of 40 kDa (MERIT)40.


Assuntos
Antineoplásicos , Linfoma Cutâneo de Células T , Micose Fungoide , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Fosfatidilinositol 3-Quinases , Proteômica , Qualidade de Vida , Perfilação da Expressão Gênica , Mamíferos
5.
JID Innov ; 3(4): 100206, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37533581

RESUMO

Actinic keratoses (AKs) are premalignant intraepidermal neoplasms that occur as a result of cumulative sun damage. AKs commonly relapse, and up to 16% undergo malignant transformation into cutaneous squamous cell carcinoma. There is a need for novel therapies that reduce the quantity and surface area of AKs as well as prevent malignant transformation to cutaneous squamous cell carcinomas. We recently showed that GZ17-6.02, an anticancer agent composed of curcumin, haramine, and isovanillin, inhibited the growth of H297.T cells. This study evaluated the efficacy of a topical formulation of GZ17-6.02, known as GZ21T, in a murine model of AK generated by exposing SKH1 mice to UVR. Treatment of mice with topical GZ21T inhibited the growth of AKs by decreasing both lesion count (P = 0.012) and surface area occupied by tumor (P = 0.002). GZ21T also suppressed the progression of AKs to cutaneous squamous cell carcinoma by decreasing the count (P = 0.047) and surface area (P = 0.049) of lesions more likely to represent cutaneous squamous cell carcinoma. RNA sequencing and proteomic analyses revealed that GZ21T suppressed several pathways, including MAPK (P = 0.025), phosphoinositide 3-kinase-protein kinase B (P = 0.04), HIF-1α (P = 0.016), Wnt (P = 0.025), insulin (P = 0.018), and ERBB (P = 0.016) signaling. GZ21T also upregulated the autophagy-promoting protein AMPK while suppressing proteins such as PD-L1, glutaminase, pAkt1 S473, and eEF2K.

6.
JID Innov ; 3(1): 100107, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704704

RESUMO

UV irradiation is commonly used in murine models of skin cancers. Despite the popularity of using UVB rays to model photocarcinogenesis in animals, there is a lack of standardization in the secondary enclosures used to administer radiation. An appraisal of the literature also shows a general lack of details regarding the materials and procedures utilized in the fabrication of such enclosures. We present in this study a detailed overview of the construction of a UVB exposure chamber that successfully induces lesions in hairless mice. A standardized protocol for producing a UVB enclosure may reduce methodological variation in future studies seeking to investigate photocarcinogenesis in animals.

8.
Front Oncol ; 12: 1045459, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408163

RESUMO

GZ17-6.02 is undergoing clinical evaluation in solid tumors and lymphoma. We defined the biology of GZ17-6.02 in prostate cancer cells and determined whether it interacted with the PARP1 inhibitor olaparib to enhance tumor cell killing. GZ17-6.02 interacted in a greater than additive fashion with olaparib to kill prostate cancer cells, regardless of androgen receptor expression or loss of PTEN function. Mechanistically, GZ17-6.02 initially caused peri-nuclear activation of ataxia-telangiectasia mutated (ATM) that was followed after several hours by activation of nuclear ATM, and which at this time point was associated with increased levels of DNA damage. Directly downstream of ATM, GZ17-6.02 and olaparib cooperated to activate the AMP-dependent protein kinase (AMPK) which then activated the kinase ULK1, resulting in autophagosome formation that was followed by autophagic flux. Knock down of ATM, AMPKα or the autophagy-regulatory proteins Beclin1 or ATG5 significantly reduced tumor cell killing. GZ17-6.02 and olaparib cooperated to activate protein kinase R which phosphorylated and inactivated eIF2α, i.e., enhanced endoplasmic reticulum (ER) stress signaling. Knock down of eIF2α also significantly reduced autophagosome formation and tumor cell killing. We conclude that GZ17-6.02 and olaparib interact to kill prostate cancer cells in vitro by increasing autophagy and by enhancing ER stress signaling. In vivo, GZ17-6.02 as a single agent profoundly reduced tumor growth and significantly prolonged animal survival. GZ17-6.02 interacted with olaparib to further suppress the growth of LNCaP tumors without ultimately enhancing animal survival. Our data support the consideration of GZ17-6.02 as a possible therapeutic agent in patients with AR+ prostate cancer.

9.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35456993

RESUMO

Epidermal Growth Factor Receptor (EGFR) is amplified in over 50% of glioblastomas and promotes tumor formation and progression. However, attempts to treat glioblastoma with EGFR tyrosine kinase inhibitors have been unsuccessful thus far. The current standard of care is especially poor in patients with a constitutively active form of EGFR, EGFRvIII, which is associated with shorter survival time. This study examined the effect of GZ17-6.02, a novel anti-cancer agent undergoing phase 1 studies, on two EGFRvIII+ glioblastoma stem cells: D10-0171 and D317. In vitro analyses showed that GZ17-6.02 inhibited the growth of both D10-0171 and D317 cells with IC50 values of 24.84 and 28.28 µg/mL respectively. RNA sequencing and reverse phase protein array analyses revealed that GZ17-6.02 downregulates pathways primarily related to steroid synthesis and cell cycle progression. Interestingly, G17-6.02's mechanism of action involves the downregulation of the recently identified glioblastoma super-enhancer genes WSCD1, EVOL2, and KLHDC8A. Finally, a subcutaneous xenograft model showed that GZ17-6.02 inhibits glioblastoma growth in vivo. We conclude that GZ17-6.02 is a promising combination drug effective at inhibiting the growth of a subset of glioblastomas and our data warrants further preclinical studies utilizing xenograft models to identify patients that may respond to this drug.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos
10.
Anticancer Drugs ; 33(5): 415-423, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276694

RESUMO

OBJECTIVES: The drug GZ17-6.02 is undergoing phase I in solid tumor patients (NCT03775525). The present studies initially determined the impact of prolonged exposure of colorectal tumors to GZ17-6.02, and to determine whether GZ17-6.02 enhanced the efficacy of an anti-PD1 antibody. Subsequently, studies defined the evolutionary resistance mechanisms in tumor cells previously exposed to GZ17-6.02. METHODS: IACUC-approved animal studies were performed. In cell immunoblotting, cell transfections and trypan blue death assays were performed. RESULTS: Prolonged exposure of colorectal tumors to GZ17-6.02 enhanced the efficacy of 5-fluorouracil and of an anti-PD1 antibody, significantly prolonging animal survival. Tumor cells previously exposed to GZ17-6.02 in vivo had elevated their expression of ERBB2 and ERBB3, and increased phosphorylation of ERBB1, ERBB3, PDGFRß, AKT T308, ERK1/2, p70 S6K T389, STAT5 Y694 and c-SRC Y416. The phosphorylation of c-SRC Y527 declined. The efficacy of ERBB receptor inhibitors at killing these resistant tumor cells was unaltered by prior GZ17-6.02 exposure whereas the efficacy of multi-kinase/PDGFRß inhibitors was significantly reduced. Treatment of colon cancer cells with GZ17-6.02 rapidly reduced the levels of multiple HDAC proteins and altered their subcellular localization. Isolates from resistant tumors expressed less CD95 and FAS-L. HDAC inhibitors enhanced CD95 and FAS-L levels in the resistant cells via activation of NFκB and HDAC inhibitors restored the efficacy of GZ17-6.02 to near control levels. CONCLUSIONS: Our findings demonstrate that GZ17-6.02 has the potential to be developed as a colon cancer therapeutic and that resistance to the drug can be partially reversed by HDAC inhibitors.


Assuntos
Antineoplásicos , Neoplasias do Colo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios Clínicos Fase I como Assunto , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Fluoruracila , Inibidores de Histona Desacetilases , Humanos , Receptor ErbB-2 , Receptor ErbB-3
11.
Oncotarget ; 13: 281-290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136485

RESUMO

GZ17-6.02 is undergoing clinical evaluation in solid tumors and lymphoma. The present studies were performed to define its biology in renal carcinoma cells and to determine whether it interacted with axitinib to enhance tumor cell killing. GZ17-6.02 interacted in an arithmetically greater than additive fashion with axitinib to kill kidney cancer cells. GZ17-6.02 and axitinib cooperated to inactivate ERBB2, c-MET, c-KIT, c-SRC, the AMPK, STAT3, STAT5 and eIF2α and to activate PERK, ULK1 and ATG13. The drugs interacted to increase the expression of FAS-L and to decrease the levels of MCL1, BCL-XL, and HDACs 1-3. The drugs as single agents inactivated the Hippo pathway. GZ17-6.02 and axitinib interacted to enhance autophagosome formation and autophagic flux. Knock down of Beclin1, ATG5, eIF2α, toxic BH3 domain proteins or CD95/FADD significantly reduced drug combination lethality. GZ17-6.02 and axitinib increased the expression of BAK, BIM, Beclin1 and ATG5, effects blocked by knock down of eIF2α. The drugs increased phosphorylation of ULK1 S757 and ATG13 S318 and decreased the phosphorylation of mTORC1 and mTORC2, effects blocked by knock down of AMPKα. Knock down of Beclin1 or ATG5 prevented the drug combination reducing expression of HDACs 1-3 and from enhancing the expression of MHCA. Knock down of HDACs 1-3 enhanced MHCA expression. We conclude that GZ17-6.02 and axitinib interact to kill requiring ER stress signaling, autophagy and death receptor signaling. Autophagic degradation of HDACs played a key role in enhancing MHCA expression and of a potential improved response to checkpoint inhibitory immunotherapy.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Neoplasias Renais , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Autofagia , Axitinibe/farmacologia , Proteína Beclina-1/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Sinergismo Farmacológico , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Receptores de Morte Celular/metabolismo , Fator de Transcrição STAT5/metabolismo
12.
Oncotarget ; 13: 92-104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035775

RESUMO

GZ17-6.02 is presently undergoing clinical evaluation in solid tumors and lymphoma. The present studies were performed to define its biology in estrogen receptor positive breast cancer cells and to determine whether it interacted with palbociclib to enhance tumor cell killing. GZ17-6.02 interacted in an additive fashion with palbociclib to kill ER+ breast cancer cells. GZ17-6.02 and palbociclib cooperated to inactivate mTOR and AKT and to activate ULK1 and PERK. The drugs interacted to increase the expression of FAS-L and BAX, and to decrease the levels of MCL1, the estrogen receptor, and HDACs 1-3. Palbociclib activated ERBB3, an effect blocked by GZ17-6.02. GZ17-6.02 and palbociclib interacted to increase the expression of multiple toxic BH3 domain proteins and to reduce MCL1 and BCL-XL expression. Knock down of FAS-L reduced the lethality of [GZ17-6.02 + palbociclib]. GZ17-6.02 and palbociclib interacted to enhance autophagosome formation and autophagic flux. Knock down of Beclin1, ATG5, BAG3, eIF2α, toxic BH3 domain proteins or CD95 significantly reduced drug combination lethality. GZ17-6.02 and palbociclib increased the expression of Beclin1 and ATG5, effects blocked by knock down of eIF2α. The drugs also increased the phosphorylation of the AMPK and ATG13, effects blocked by knock down of ATM. Knock down of ATM or the AMPK, or expression of activated mTOR significantly reduced the abilities of GZ17-6.02 and palbociclib to enhance autophagosome formation and autophagic flux.


Assuntos
Antineoplásicos , Neoplasias da Mama , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose , Proteína Beclina-1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Sinergismo Farmacológico , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Piperazinas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas , Receptores de Estrogênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína X Associada a bcl-2/metabolismo
13.
Am J Dermatopathol ; 44(4): 276-278, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34966046

RESUMO

ABSTRACT: Panfolliculomas (PF) are rare, benign, follicular tumors that differentiate toward multiple components of the hair follicle, and several variants have been described. We present a case of a rare pigmented PF presenting on actinically damaged skin in an 83-year-old man, which was clinically concerning for malignancy. This tumor arose near an area of atypical squamous proliferation and has evidence of infundibular, outer root sheath, and matrical differentiation and foci of heavy melanin pigmentation and increased melanocytes. We propose the novel designation of "melanocytic PF," akin to melanocytic matricoma but with panfollicular differentiation.


Assuntos
Doenças do Cabelo/diagnóstico , Melanócitos/patologia , Pilomatrixoma/diagnóstico , Neoplasias Cutâneas/diagnóstico , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Antebraço , Doenças do Cabelo/patologia , Humanos , Masculino , Pilomatrixoma/patologia , Neoplasias Cutâneas/patologia
15.
J Dermatolog Treat ; 33(4): 1855-1860, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34106034

RESUMO

OBJECTIVE: BRCA1-associated protein 1 (BAP1) tumor predisposition syndrome (BAP1-TPDS) is associated with an increased risk for aggressive cancers. BAP1-inactivated melanocytic tumors (BIMTs) are observed in 75% of BAP1-TPDS, often presenting as early as the second decade of life. These lesions may serve as a predictive marker to identify patients who carry germline BAP1 mutations and thus are at higher risk of developing associated cancers. Early diagnosis for these malignancies is crucial for curative treatment. METHODS: We report a patient who presented with an incidental scalp papule for which biopsy was consistent with a BIMT. A review of literature was conducted by accessing the PubMed database to delineate present knowledge of BIMTs, assess recommendations for screening of germline BAP1 mutations, and evaluate cancer surveillance strategies for BAP1-TPDS associated cancers. RESULTS: Consensus in literature indicates that genetic evaluation should be encouraged in patients presenting with multiple BIMTs or a new BIMT with significant family history of BAP1-TPDS related cancers. If positive for a germline BAP1 mutation, cancer surveillance should be recommended for early diagnosis and timely intervention. CONCLUSIONS: Further workup should be encouraged in patients who meet the proposed screening criteria for germline BAP1 mutations. Patients could benefit from cancer surveillance for earlier diagnosis, management, and improved outcomes.


Assuntos
Síndromes Neoplásicas Hereditárias , Couro Cabeludo , Mutação em Linhagem Germinativa , Humanos , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
16.
Front Oncol ; 11: 711043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490108

RESUMO

We determined the molecular mechanisms by which the novel therapeutic GZ17-6.02 killed non-small cell lung cancer (NSCLC) cells. Erlotinib, afatinib, and osimertinib interacted with GZ17-6.02 to kill NSCLC cells expressing mutant EGFR proteins. GZ17-6.02 did not interact with any EGFR inhibitor to kill osimertinib-resistant cells. GZ17-6.02 interacted with the thymidylate synthase inhibitor pemetrexed to kill NSCLC cells expressing mutant ERBB1 proteins or mutant RAS proteins or cells that were resistant to EGFR inhibitors. The drugs interacted to activate ATM, the AMPK, and ULK1 and inactivate mTORC1, mTORC2, ERK1/2, AKT, eIF2α; and c-SRC. Knockdown of ATM or AMPKα1 prevented ULK1 activation. The drugs interacted to cause autophagosome formation followed by flux, which was significantly reduced by knockdown of ATM, AMPKα1, and eIF2α, or by expression of an activated mTOR protein. Knockdown of Beclin1, ATG5, or [BAX + BAK] partially though significantly reduced drug combination lethality as did expression of activated mTOR/AKT/MEK1 or over-expression of BCL-XL. Expression of dominant negative caspase 9 weakly reduced killing. The drug combination reduced the expression of HDAC2 and HDAC3, which correlated with lower PD-L1, IDO1, and ODC levels and increased MHCA expression. Collectively, our data support consideration of combining GZ17-6.02 and pemetrexed in osimertinib-resistant NSCLC.

18.
Front Oncol ; 11: 677725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937087

RESUMO

[This corrects the article DOI: 10.3389/fonc.2020.01331.].

19.
J Pharmacol Toxicol Methods ; 110: 107071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33933627

RESUMO

Actinic keratoses (AKs) represent a premalignant skin condition due to chronic sun damage that dramatically increases in prevalence in the aging population. Currently, animal models of AKs utilize photocarcinogenesis, chemical carcinogens, or targeted gene modulation, and each method possesses unique strengths and weaknesses. Models using photodamage most comprehensively describe methods for preferentially selecting AK lesions, while replicating the pathogenesis of AKs with greater fidelity than models utilizing other carcinogenic methods. The following review of current murine models of AKs will aid in the selection of mouse models appropriate for future in vivo studies to test the efficacy of novel therapeutic agents for the treatment of AKs.


Assuntos
Ceratose Actínica , Animais , Modelos Animais de Doenças , Camundongos
20.
Front Oncol ; 11: 656453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898322

RESUMO

We defined the lethal interaction between the novel therapeutic GZ17-6.02 and the standard of care combination of the MEK1/2 inhibitor trametinib and the B-RAF inhibitor dabrafenib in PDX isolates of cutaneous melanoma expressing a mutant B-RAF V600E protein. GZ17-6.02 interacted with trametinib/dabrafenib in an additive fashion to kill melanoma cells. Regardless of prior vemurafenib resistance, the drugs when combined interacted to prolong ATM S1981/AMPK T172 and eIF2α S51 phosphorylation and prolong the reduced phosphorylation of JAK2 Y1007, STAT3 Y705 and STAT5 Y694. In vemurafenib-resistant cells GZ17-6.02 caused a prolonged reduction in mTORC1 S2448, mTORC2 S2481 and ULK1 S757 phosphorylation; regardless of vemurafenib resistance, GZ17-6.02 caused a prolonged elevation in CD95 and FAS-L expression. Knock down of eIF2α, Beclin1, ATG5, ATM, AMPKα, CD95 or FADD significantly reduced the ability of GZ17-6.02 to kill as a single agent or when combined with the kinase inhibitors. Expression of activated mTOR, activated STAT3, activated MEK1 or activated AKT significantly reduced the ability of GZ17-6.02 to kill as a single agent or when combined with kinase inhibitors; protective effects that were significantly less pronounced in cells treated with trametinib/dabrafenib. Regardless of vemurafenib resistance, the drugs alone or in combination all reduced the expression of PD-L1 and increased the levels of MHCA, which was linked to degradation of multiple HDAC proteins. Our findings support the use of GZ17-6.02 in combination with trametinib/dabrafenib in the treatment of melanomas expressing mutant B-RAF V600E proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...