Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 9(2)2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-28787867

RESUMO

Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX) analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ray diffraction (XRD). Oxidation state information was obtained by X-ray photoelectron spectroscopy (XPS). Photodegradation of organic dyes methylene blue and rhodamine B was used for evaluation of the photocatalytic properties of the coatings under a visible light source. The photocatalytic properties of the deposited coatings were then compared to a sample of commercial titanium dioxide-based photocatalytic product. The repeatability of the dye degradation reactions and photocatalytic coating reusability are discussed. It was found that coatings with a Bi:Mo ratio of approximately 2:1 exhibited the highest photocatalytic activity of the coatings studied; its efficacy in dye photodegradation significantly outperformed a sample of commercial photocatalytic coating.

2.
Molecules ; 19(10): 16327-48, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25314598

RESUMO

Titania and doped-titania coatings can be deposited by a wide range of techniques; this paper will concentrate on magnetron sputtering techniques, including "conventional" reactive co-sputtering from multiple metal targets and the recently introduced high power impulse magnetron sputtering (HiPIMS). The latter has been shown to deliver a relatively low thermal flux to the substrate, whilst still allowing the direct deposition of crystalline titania coatings and, therefore, offers the potential to deposit photocatalytically active titania coatings directly onto thermally sensitive substrates. The deposition of coatings via these techniques will be discussed, as will the characterisation of the coatings by XRD, SEM, EDX, optical spectroscopy, etc. The assessment of photocatalytic activity and photoactivity through the decomposition of an organic dye (methylene blue), the inactivation of E. coli microorganisms and the measurement of water contact angles will be described. The impact of different deposition technologies, doping and co-doping strategies on coating structure and activity will be also considered.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Titânio/química , Titânio/farmacologia , Escherichia coli/efeitos dos fármacos , Luz , Campos Magnéticos , Teste de Materiais , Nanoestruturas/química , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...