Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31763376

RESUMO

AIM: The majority of preclinical studies investigating aberrant glial-neuroimmune actions underlying neuropathic pain have focused on male rodent models. Recently, studies have shown peripheral immune cells play a more prominent role than glial cells in mediating pathological pain in females. Here, we compared the onset and duration of allodynia in males and females, and the anti-allodynic action of a potentially novel therapeutic drug (BIRT377) that not only antagonizes the action of lymphocyte function-associated antigen-1 (LFA-1) to reduce cell migration in the periphery, but may also directly alter the cellular inflammatory bias. METHODS: Male and female mice were subjected to peripheral nerve injury chronic constriction injury (CCI) applying two methods, using either 4-0 or 5-0 chromic gut suture material, to examine potential sex differences in the onset, magnitude and duration of allodynia. Hindpaw sensitivity before and after CCI and application of intravenous BIRT377 was assessed. Peripheral and spinal tissues were analyzed for protein (multiplex electrochemiluminescence technology) and mRNA expression (quantitative real-time PCR). The phenotype of peripheral T cells was determined using flow cytometry. RESULTS: Sex differences in proinflammatory CCL2 and IL-1ß and the anti-inflammatory IL-10 were observed from a set of cytokines analyzed. A profound proinflammatory T cell (Th17) response in the periphery and spinal cord was also observed in neuropathic females. BIRT377 reversed pain, reduced IL-1ß and TNF, and increased IL-10 and transforming growth factor (TGF)-ß1, also an anti-inflammatory cytokine, in both sexes. However, female-derived T cell cytokines are transcriptionally regulated by BIRT377, as demonstrated by reducing proinflammatory IL-17A production with concurrent increases in IL-10, TGF-ß1 and the anti-inflammatory regulatory T cell-related factor, FOXP3. CONCLUSION: This study supports that divergent peripheral immune and neuroimmune responses during neuropathy exists between males and females. Moreover, the modulatory actions of BIRT377 on T cells during neuropathy are predominantly specific to females. These data highlight the necessity of including both sexes for studying drug efficacy and mechanisms of action in preclinical studies and clinical trials.

2.
J Mol Biol ; 430(17): 2709-2721, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29787766

RESUMO

Inherited peripheral neuropathies are a group of neurodegenerative disorders that clinically affect 1 in 2500 individuals. Recently, genetic mutations in human histidine nucleotide-binding protein 1 (hHint1) have been strongly and most frequently associated with patients suffering from axonal neuropathy with neuromyotonia. However, the correlation between the impact of these mutations on the hHint1 structure, enzymatic activity and in vivo function has remained ambiguous. Here, we provide detailed biochemical characterization of a set of these hHint1 mutations. Our findings indicate that half of the mutations (R37P, G93D and W123*) resulted in a destabilization of the dimeric state and a significant decrease in catalytic activity and HINT1 inhibitor binding affinity. The H112N mutant was found to be dimeric, but devoid of catalytic activity, due to the loss of the catalytically essential histidine; nevertheless, it exhibited high affinity to AMP and a HINT1 inhibitor. In contrast to the active-site mutants, the catalytic activity and dimeric structure of the surface mutants, C84R and G89V, were found to be similar to the wild-type enzyme. Taken together, our results suggest that the pathophysiology of inherited axonal neuropathy with neuromyotonia can be induced by conversion of HINT1 from a homodimer to monomer, by modification of select surface residues or by a significant reduction of the enzyme's catalytic efficiency.


Assuntos
Síndrome de Isaacs/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Histidina/metabolismo , Humanos , Proteínas Mutantes/genética , Proteínas do Tecido Nervoso/genética , Conformação Proteica , Homologia de Sequência
3.
Biomacromolecules ; 19(7): 2650-2656, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29689161

RESUMO

Enzymes possess unique qualities that make them ideal regulators of supramolecular assembly. They are uniquely sensitive to biomolecules and biological compartments, catalytic in effecting chemical reactions, and present a biocompatible and degradable platform for assembly regulation. We demonstrate the novel utility of Histidine Triad Nucleotide Binding Protein 1 (HINT1) in regulating supramolecular hydrogel formation. We synthesized nucleoside-phosphoramidate-functionalized self-assembling peptides that we observed to form nanofibers. We found HINT1's catalytic hydrolysis of the nucleoside phosphoramidate moieties within the nanofiber structures to induce nanofiber organization and higher ordered assembly. The role of HINT1 in effecting this structural change was confirmed with experiments utilizing a high-affinity HINT1 inhibitor and catalytically dead HINT1 mutant. In addition, the kinetics and morphology of hydrogel formation were found to be dependent on the structure of the released nucleoside monophosphate. This work highlights the self-assembly of phosphoramidate nanofibers and their higher organization triggered by HINT1 enzymatic activity.


Assuntos
Amidas/química , Hidrogéis/química , Nanofibras/química , Proteínas do Tecido Nervoso/metabolismo , Nucleosídeos/química , Ácidos Fosfóricos/química , Tensoativos/química , Biocatálise , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA