Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 39(7): 110819, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584681

RESUMO

T cell pathology in the skin leads to monocyte influx, but we have little understanding of the fate of recruited cells within the diseased niche, or the long-term impact on cutaneous immune homeostasis. By combining a murine model of acute graft-versus-host disease (aGVHD) with analysis of patient samples, we demonstrate that pathology initiates dermis-specific macrophage differentiation and show that aGVHD-primed macrophages continue to dominate the dermal compartment at the relative expense of quiescent MHCIIint cells. Exposure of the altered dermal niche to topical haptens after disease resolution results in hyper-activation of regulatory T cells (Treg), but local breakdown in tolerance. Disease-imprinted macrophages express increased IL-1ß and are predicted to elicit altered TNF superfamily interactions with cutaneous Treg, and we demonstrate the direct loss of T cell regulation within the resolved skin. Thus, T cell pathology leaves an immunological scar in the skin marked by failure to re-set immune homeostasis.


Assuntos
Doença Enxerto-Hospedeiro , Pele , Animais , Humanos , Tolerância Imunológica , Macrófagos/metabolismo , Camundongos , Monócitos/metabolismo , Pele/metabolismo , Linfócitos T Reguladores
2.
Sci Immunol ; 4(38)2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444235

RESUMO

A dense population of embryo-derived Langerhans cells (eLCs) is maintained within the sealed epidermis without contribution from circulating cells. When this network is perturbed by transient exposure to ultraviolet light, short-term LCs are temporarily reconstituted from an initial wave of monocytes but thought to be superseded by more permanent repopulation with undefined LC precursors. However, the extent to which this process is relevant to immunopathological processes that damage LC population integrity is not known. Using a model of allogeneic hematopoietic stem cell transplantation, where alloreactive T cells directly target eLCs, we have asked whether and how the original LC network is ultimately restored. We find that donor monocytes, but not dendritic cells, are the precursors of long-term LCs in this context. Destruction of eLCs leads to recruitment of a wave of monocytes that engraft in the epidermis and undergo a sequential pathway of differentiation via transcriptionally distinct EpCAM+ precursors. Monocyte-derived LCs acquire the capacity of self-renewal, and proliferation in the epidermis matched that of steady-state eLCs. However, we identified a bottleneck in the differentiation and survival of epidermal monocytes, which, together with the slow rate of renewal of mature LCs, limits repair of the network. Furthermore, replenishment of the LC network leads to constitutive entry of cells into the epidermal compartment. Thus, immune injury triggers functional adaptation of mechanisms used to maintain tissue-resident macrophages at other sites, but this process is highly inefficient in the skin.


Assuntos
Células de Langerhans/imunologia , Monócitos/imunologia , Animais , Células Cultivadas , Humanos , Células de Langerhans/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
3.
Front Immunol ; 8: 1941, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379502

RESUMO

Langerhans cells (LC) are a unique population of tissue-resident macrophages that form a network of cells across the epidermis of the skin, but which have the ability to migrate from the epidermis to draining lymph nodes (LN). Their location at the skin barrier suggests a key role as immune sentinels. However, despite decades of research, the role of LC in skin immunity is unclear; ablation of LC results in neither fatal susceptibility to skin infection nor overt autoimmunity due to lack of immune regulation. Our understanding of immune processes has traditionally been centered on secondary lymphoid organs as sites of lymphocyte priming and differentiation, which is exemplified by LC, initially defined as a paradigm for tissue dendritic cells that migrate to draining LN on maturation. But, more recently, an awareness of the importance of the tissue environment in shaping effector immunity has emerged. In this mini-review, we discuss whether our lack of understanding of LC function stems from our lymph node-centric view of these cells, and question whether a focus on LC as immune regulators in situ in the skin may reveal clearer answers about their function in cutaneous immunology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...