Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2320170121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743630

RESUMO

Pangenomes vary across bacteria. Some species have fluid pangenomes, with a high proportion of genes varying between individual genomes. Other species have less fluid pangenomes, with different genomes tending to contain the same genes. Two main hypotheses have been suggested to explain this variation: differences in species' bacterial lifestyle and effective population size. However, previous studies have not been able to test between these hypotheses because the different features of lifestyle and effective population size are highly correlated with each other, and phylogenetically conserved, making it hard to disentangle their relative importance. We used phylogeny-based analyses, across 126 bacterial species, to tease apart the causal role of different factors. We found that pangenome fluidity was lower in i) host-associated compared with free-living species and ii) host-associated species that are obligately dependent on a host, live inside cells, and are more pathogenic and less motile. In contrast, we found no support for the competing hypothesis that larger effective population sizes lead to more fluid pangenomes. Effective population size appears to correlate with pangenome variation because it is also driven by bacterial lifestyle, rather than because of a causal relationship.


Assuntos
Bactérias , Genoma Bacteriano , Filogenia , Bactérias/genética , Bactérias/classificação
2.
Microbiology (Reading) ; 170(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38577983

RESUMO

The growth and success of many bacteria appear to rely on a stunning range of cooperative behaviours. But what is cooperation and how is it studied?


Assuntos
Altruísmo , Comportamento Cooperativo , Evolução Biológica , Bactérias/genética
3.
Nat Microbiol ; 9(5): 1220-1230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38443483

RESUMO

Cooperation is commonly believed to be favourable in spatially structured environments, as these systems promote genetic relatedness that reduces the likelihood of exploitation by cheaters. Here we show that a Pseudomonas aeruginosa population that exhibited cooperative swarming was invaded by cheaters when subjected to experimental evolution through cycles of range expansion on solid media, but not in well-mixed liquid cultures. Our results suggest that cooperation is disfavoured in a more structured environment, which is the opposite of the prevailing view. We show that spatial expansion of the population prolongs cooperative swarming, which was vulnerable to cheating. Our findings reveal a mechanism by which spatial structures can suppress cooperation through modulation of the quantitative traits of cooperation, a process that leads to population divergence towards distinct colonization strategies.


Assuntos
Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Interações Microbianas , Meios de Cultura/química , Evolução Biológica
4.
Proc Biol Sci ; 291(2017): 20232549, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38412971

RESUMO

Cooperation is prevalent across bacteria, but risks being exploited by non-cooperative cheats. Horizontal gene transfer, particularly via plasmids, has been suggested as a mechanism to stabilize cooperation. A key prediction of this hypothesis is that genes which are more likely to be transferred, such as those on plasmids, should be more likely to code for cooperative traits. Testing this prediction requires identifying all genes for cooperation in bacterial genomes. However, previous studies used a method which likely misses some of these genes for cooperation. To solve this, we used a new genomics tool, SOCfinder, which uses three distinct modules to identify all kinds of genes for cooperation. We compared where these genes were located across 4648 genomes from 146 bacterial species. In contrast to the prediction of the hypothesis, we found no evidence that plasmid genes are more likely to code for cooperative traits. Instead, we found the opposite-that genes for cooperation were more likely to be carried on chromosomes. Overall, the vast majority of genes for cooperation are not located on plasmids, suggesting that the more general mechanism of kin selection is sufficient to explain the prevalence of cooperation across bacteria.


Assuntos
Bactérias , Genoma Bacteriano , Plasmídeos/genética , Bactérias/genética , Genômica , Transferência Genética Horizontal
5.
Nat Ecol Evol ; 8(4): 599, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191837
6.
Microb Genom ; 9(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38117204

RESUMO

Bacteria cooperate by working collaboratively to defend their colonies, share nutrients, and resist antibiotics. Nevertheless, our understanding of these remarkable behaviours primarily comes from studying a few well-characterized species. Consequently, there is a significant gap in our understanding of microbial social traits, particularly in natural environments. To address this gap, we can use bioinformatic tools to identify genes that control cooperative or otherwise social traits. Existing tools address this challenge through two approaches. One approach is to identify genes that encode extracellular proteins, which can provide benefits to neighbouring cells. An alternative approach is to predict gene function using annotation tools. However, these tools have several limitations. Not all extracellular proteins are cooperative, and not all cooperative behaviours are controlled by extracellular proteins. Furthermore, existing functional annotation methods frequently miss known cooperative genes. We introduce SOCfinder as a new tool to find bacterial genes that control cooperative or otherwise social traits. SOCfinder combines information from several methods, considering if a gene is likely to [1] code for an extracellular protein [2], have a cooperative functional annotation, or [3] be part of the biosynthesis of a cooperative secondary metabolite. We use data on two extensively-studied species (P. aeruginosa and B. subtilis) to show that SOCfinder is better at finding known cooperative genes than existing tools. We also use theory from population genetics to identify a signature of kin selection in SOCfinder cooperative genes, which is lacking in genes identified by existing tools. SOCfinder opens up a number of exciting directions for future research, and is available to download from https://github.com/lauriebelch/SOCfinder.


Assuntos
Bactérias , Genômica , Bactérias/genética , Genes Bacterianos/genética , Biologia Computacional , Antibacterianos , Pseudomonas aeruginosa
7.
Evol Lett ; 7(5): 315-330, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37829498

RESUMO

Laboratory experiments have suggested that bacteria perform a range of cooperative behaviors, which are favored because they are directed toward relatives (kin selection). However, there is a lack of evidence for cooperation and kin selection in natural bacterial populations. Molecular population genetics offers a promising method to study natural populations because the theory predicts that kin selection will lead to relaxed selection, which will result in increased polymorphism and divergence at cooperative genes. Examining a natural population of Bacillus subtilis, we found consistent evidence that putatively cooperative traits have higher polymorphism and greater divergence than putatively private traits expressed at the same rate. In addition, we were able to eliminate alternative explanations for these patterns and found more deleterious mutations in genes controlling putatively cooperative traits. Overall, our results suggest that cooperation is favored by kin selection, with an average relatedness of r = .79 between interacting individuals.

8.
Evol Lett ; 7(5): 339-350, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37829502

RESUMO

Cooperative societies can be threatened by cheats, who invest less in cooperation and exploit the contributions of others. The impact of cheats depends on the extent to which they are maintained in the population. However, different empirical studies, across organisms ranging from RNA replicators to bacteria, have shown diverse cheat-cooperator dynamics. These vary from approaching a stable equilibrium to dynamic cyclical oscillations. The reason for this variation remains unclear. Here, we develop a theoretical model to identify the factors that determine whether dynamics should tend toward stable equilibria or cyclical oscillations. Our analyses show that (1) a combination of both periodic population bottlenecks and density-dependent selection on cheating is required to produce cyclical oscillations and (2) the extent of frequency-dependent selection for cheating can influence the amplitude of these oscillations but does not lead to oscillations alone. Furthermore, we show that stochastic group formation (demographic stochasticity) can generate different forms of oscillation, over a longer time scale, across growth cycles. Our results provide experimentally testable hypotheses for the processes underlying cheat-cooperator dynamics.

9.
Proc Natl Acad Sci U S A ; 120(30): e2220761120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463213

RESUMO

Crozier's paradox suggests that genetic kin recognition will not be evolutionarily stable. The problem is that more common tags (markers) are more likely to be recognized and helped. This causes common tags to increase in frequency, eliminating the genetic variability that is required for genetic kin recognition. Two potential solutions to this problem have been suggested: host-parasite coevolution and multiple social encounters. We show that the host-parasite coevolution hypothesis does not work as commonly assumed. Host-parasite coevolution only stabilizes kin recognition at a parasite resistance locus if parasites adapt rapidly to hosts and cause intermediate or high levels of damage (virulence). Additionally, when kin recognition is stabilized at a parasite resistance locus, this can have an additional cost of making hosts more susceptible to parasites. However, we show that if the genetic architecture is allowed to evolve, meaning natural selection can choose the recognition locus, genetic kin recognition is more likely to be stable. The reason for this is that host-parasite coevolution can maintain tag diversity at another (neutral) locus by genetic hitchhiking, allowing that other locus to be used for genetic kin recognition. These results suggest a way that host-parasite coevolution can resolve Crozier's paradox, without making hosts more susceptible to parasites. However, the opportunity for multiple social encounters may provide a more robust resolution of Crozier's paradox.


Assuntos
Parasitos , Animais , Parasitos/genética , Seleção Genética , Adaptação Fisiológica , Virulência , Interações Hospedeiro-Parasita/genética , Evolução Biológica
11.
Nat Ecol Evol ; 7(7): 1022-1044, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202501

RESUMO

For over 300 million years, insects have relied on symbiotic microbes for nutrition and defence. However, it is unclear whether specific ecological conditions have repeatedly favoured the evolution of symbioses, and how this has influenced insect diversification. Here, using data on 1,850 microbe-insect symbioses across 402 insect families, we found that symbionts have allowed insects to specialize on a range of nutrient-imbalanced diets, including phloem, blood and wood. Across diets, the only limiting nutrient consistently associated with the evolution of obligate symbiosis was B vitamins. The shift to new diets, facilitated by symbionts, had mixed consequences for insect diversification. In some cases, such as herbivory, it resulted in spectacular species proliferation. In other niches, such as strict blood feeding, diversification has been severely constrained. Symbioses therefore appear to solve widespread nutrient deficiencies for insects, but the consequences for insect diversification depend on the feeding niche that is invaded.


Assuntos
Insetos , Simbiose , Animais , Filogenia , Herbivoria
12.
Evol Lett ; 7(3): 113-120, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37251586

RESUMO

It has been hypothesized that horizontal gene transfer on plasmids can facilitate the evolution of cooperation, by allowing genes to jump between bacteria, and hence increase genetic relatedness at the cooperative loci. However, we show theoretically that horizontal gene transfer only appreciably increases relatedness when plasmids are rare, where there are many plasmid-free cells available to infect (many opportunities for horizontal gene transfer). In contrast, when plasmids are common, there are few opportunities for horizontal gene transfer, meaning relatedness is not appreciably increased, and so cooperation is not favored. Plasmids, therefore, evolve to be rare and cooperative, or common and noncooperative, meaning plasmid frequency and cooperativeness are never simultaneously high. The overall level of plasmid-mediated cooperation, given by the product of plasmid frequency and cooperativeness, is therefore consistently negligible or low.

13.
PLoS Biol ; 21(4): e3002092, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37093882

RESUMO

In multipartite viruses, the genome is split into multiple segments, each of which is transmitted via a separate capsid. The existence of multipartite viruses poses a problem, because replication is only possible when all segments are present within the same host. Given this clear cost, why is multipartitism so common in viruses? Most previous hypotheses try to explain how multipartitism could provide an advantage. In so doing, they require scenarios that are unrealistic and that cannot explain viruses with more than 2 multipartite segments. We show theoretically that selection for cheats, which avoid producing a shared gene product, but still benefit from gene products produced by other genomes, can drive the evolution of both multipartite and segmented viruses. We find that multipartitism can evolve via cheating under realistic conditions and does not require unreasonably high coinfection rates or any group-level benefit. Furthermore, the cheating hypothesis is consistent with empirical patterns of cheating and multipartitism across viruses. More broadly, our results show how evolutionary conflict can drive new patterns of genome organisation in viruses and elsewhere.


Assuntos
Evolução Biológica , Vírus , Vírus/genética , Genoma Viral
14.
Biol Lett ; 18(12): 20220447, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541095

RESUMO

Cooperative symbionts enable their hosts to exploit a diversity of environments. A low genetic diversity (high relatedness) between the symbionts within a host is thought to favour cooperation by reducing conflict within the host. However, hosts will not be favoured to transmit their symbionts (or commensals) in costly ways that increase relatedness, unless this also provides an immediate fitness benefit to the host. We suggest that conditionally expressed costly competitive traits, such as antimicrobial warfare with bacteriocins, could provide a relatively universal reason for why hosts would gain an immediate benefit from increasing the relatedness between symbionts. We theoretically test this hypothesis with a simple illustrative model that examines whether hosts should manipulate relatedness, and an individual-based simulation, where host control evolves in a structured population. We find that hosts can be favoured to manipulate relatedness, to reduce conflict between commensals via this immediate reduction in warfare. Furthermore, this manipulation evolves to extremes of high or low vertical transmission and only in a narrow range is partly vertical transmission stable.


Assuntos
Evolução Biológica , Simbiose , Simbiose/genética , Simulação por Computador
15.
Proc Biol Sci ; 289(1987): 20221819, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36448285

RESUMO

The connectivity of a gene, defined as the number of interactions a gene's product has with other genes' products, is a key characteristic of a gene. In prokaryotes, the complexity hypothesis predicts that genes which undergo more frequent horizontal transfer will be less connected than genes which are only very rarely transferred. We tested the role of horizontal gene transfer, and other potentially important factors, by examining the connectivity of chromosomal and plasmid genes, across 134 diverse prokaryotic species. We found that (i) genes on plasmids were less connected than genes on chromosomes; (ii) connectivity of plasmid genes was not correlated with plasmid mobility; and (iii) the sociality of genes (cooperative or private) was not correlated with gene connectivity.


Assuntos
Transferência Genética Horizontal , Comportamento Social , Células Procarióticas , RNA
16.
Elife ; 112022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36193888

RESUMO

A social cheat is typically assumed to be an individual that does not perform a cooperative behaviour, or performs less of it, but can still exploit the cooperative behaviour of others. However, empirical data suggests that cheating can be more subtle, involving evolutionary arms races over the ability to both exploit and resist exploitation. These complications have not been captured by evolutionary theory, which lags behind empirical studies in this area. We bridge this gap with a mixture of game-theoretical models and individual-based simulations, examining what conditions favour more elaborate patterns of cheating. We found that as well as adjusting their own behaviour, individuals can be selected to manipulate the behaviour of others, which we term 'manipulative cheating'. Further, we found that manipulative cheating can lead to dynamic oscillations (arms races), between selfishness, manipulation, and suppression of manipulation. Our results can help explain both variation in the level of cheating, and genetic variation in the extent to which individuals can be exploited by cheats.


Assuntos
Evolução Biológica , Comportamento Cooperativo , Humanos
17.
Nat Commun ; 13(1): 3902, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794146

RESUMO

Crozier's paradox suggests that genetic kin recognition will not be evolutionarily stable. The problem is that more common tags (markers) are more likely to be recognised and helped. This causes common tags to increase in frequency, and hence eliminates the genetic variability that is required for genetic kin recognition. It has therefore been assumed that genetic kin recognition can only be stable if there is some other factor maintaining tag diversity, such as the advantage of rare alleles in host-parasite interactions. We show that allowing for multiple social encounters before each social interaction can eliminate Crozier's paradox, because it allows individuals with rare tags to find others with the same tag. We also show that rare tags are better indicators of relatedness, and hence better at helping individuals avoid interactions with non-cooperative cheats. Consequently, genetic kin recognition provides an advantage to rare tags that maintains tag diversity, and stabilises itself.


Assuntos
Evolução Biológica , Comunicação Celular , Alelos , Interações Hospedeiro-Parasita , Humanos
18.
Nat Ecol Evol ; 6(6): 662-663, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35354964
19.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193981

RESUMO

Bacteria produce a range of molecules that are secreted from the cell and can provide a benefit to the local population of cells. Laboratory experiments have suggested that these "public goods" molecules represent a form of cooperation, favored because they benefit closely related cells (kin selection). However, there is a relative lack of data demonstrating kin selection for cooperation in natural populations of bacteria. We used molecular population genetics to test for signatures of kin selection at the genomic level in natural populations of the opportunistic pathogen Pseudomonas aeruginosa We found consistent evidence from multiple traits that genes controlling putatively cooperative traits have higher polymorphism and greater divergence and are more likely to harbor deleterious mutations relative to genes controlling putatively private traits, which are expressed at similar rates. These patterns suggest that cooperative traits are controlled by kin selection, and we estimate that the relatedness for social interactions in P. aeruginosa is r = 0.84. More generally, our results demonstrate how molecular population genetics can be used to study the evolution of cooperation in natural populations.


Assuntos
Fenômenos Fisiológicos Bacterianos , Genes Bacterianos , Mutação , Pseudomonas aeruginosa/genética , Percepção de Quorum
20.
Nat Commun ; 13(1): 195, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078994

RESUMO

In bacteria and other microorganisms, the cells within a population often show extreme phenotypic variation. Different species use different mechanisms to determine how distinct phenotypes are allocated between individuals, including coordinated, random, and genetic determination. However, it is not clear if this diversity in mechanisms is adaptive-arising because different mechanisms are favoured in different environments-or is merely the result of non-adaptive artifacts of evolution. We use theoretical models to analyse the relative advantages of the two dominant mechanisms to divide labour between reproductives and helpers in microorganisms. We show that coordinated specialisation is more likely to evolve over random specialisation in well-mixed groups when: (i) social groups are small; (ii) helping is more "essential"; and (iii) there is a low metabolic cost to coordination. We find analogous results when we allow for spatial structure with a more detailed model of cellular filaments. More generally, this work shows how diversity in the mechanisms to produce phenotypic heterogeneity could have arisen as adaptations to different environments.


Assuntos
Adaptação Fisiológica/genética , Variação Biológica da População/genética , Cianobactérias/genética , Interações Microbianas/genética , Evolução Biológica , Simulação por Computador , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Aptidão Genética , Modelos Genéticos , Fenótipo , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...