Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(6): 1187-1189, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38865963

RESUMO

A major barrier to antitumor immunity in solid tumors is T cell exclusion. In this issue of Immunity, De Sanctis et al.1 elucidate how CLDN18 on pancreatic and lung cancer cells enhances infiltration, immunological synapse formation, and activation of cytotoxic T lymphocytes.


Assuntos
Claudinas , Humanos , Claudinas/metabolismo , Claudinas/imunologia , Claudinas/genética , Neoplasias/imunologia , Animais , Linfócitos T Citotóxicos/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pulmonares/imunologia , Ativação Linfocitária/imunologia , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo
2.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38645223

RESUMO

Lineage plasticity is a recognized hallmark of cancer progression that can shape therapy outcomes. The underlying cellular and molecular mechanisms mediating lineage plasticity remain poorly understood. Here, we describe a versatile in vivo platform to identify and interrogate the molecular determinants of neuroendocrine lineage transformation at different stages of prostate cancer progression. Adenocarcinomas reliably develop following orthotopic transplantation of primary mouse prostate organoids acutely engineered with human-relevant driver alterations (e.g., Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+), but only those with Rb1 deletion progress to ASCL1+ neuroendocrine prostate cancer (NEPC), a highly aggressive, androgen receptor signaling inhibitor (ARSI)-resistant tumor. Importantly, we show this lineage transition requires a native in vivo microenvironment not replicated by conventional organoid culture. By integrating multiplexed immunofluorescence, spatial transcriptomics and PrismSpot to identify cell type-specific spatial gene modules, we reveal that ASCL1+ cells arise from KRT8+ luminal epithelial cells that progressively acquire transcriptional heterogeneity, producing large ASCL1+;KRT8- NEPC clusters. Ascl1 loss in established NEPC results in transient tumor regression followed by recurrence; however, Ascl1 deletion prior to transplantation completely abrogates lineage plasticity, yielding adenocarcinomas with elevated AR expression and marked sensitivity to castration. The dynamic feature of this model reveals the importance of timing of therapies focused on lineage plasticity and offers a platform for identification of additional lineage plasticity drivers.

3.
Nature ; 627(8004): 636-645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418875

RESUMO

A hallmark of cancer is the avoidance of immune destruction. This process has been primarily investigated in locally advanced or metastatic cancer1-3; however, much less is known about how pre-malignant or early invasive tumours evade immune detection. Here, to understand this process in early colorectal cancers (CRCs), we investigated how naive colon cancer organoids that were engineered in vitro to harbour Apc-null, KrasG12D and Trp53-null (AKP) mutations adapted to the in vivo native colonic environment. Comprehensive transcriptomic and chromatin analyses revealed that the endoderm-specifying transcription factor SOX17 became strongly upregulated in vivo. Notably, whereas SOX17 loss did not affect AKP organoid propagation in vitro, its loss markedly reduced the ability of AKP tumours to persist in vivo. The small fraction of SOX17-null tumours that grew displayed notable interferon-γ (IFNγ)-producing effector-like CD8+ T cell infiltrates in contrast to the immune-suppressive microenvironment in wild-type counterparts. Mechanistically, in both endogenous Apc-null pre-malignant adenomas and transplanted organoid-derived AKP CRCs, SOX17 suppresses the ability of tumour cells to sense and respond to IFNγ, preventing anti-tumour T cell responses. Finally, SOX17 engages a fetal intestinal programme that drives differentiation away from LGR5+ tumour cells to produce immune-evasive LGR5- tumour cells with lower expression of major histocompatibility complex class I (MHC-I). We propose that SOX17 is a transcription factor that is engaged during the early steps of colon cancer to orchestrate an immune-evasive programme that permits CRC initiation and progression.


Assuntos
Adenoma , Neoplasias Colorretais , Evasão da Resposta Imune , Fatores de Transcrição SOXF , Animais , Humanos , Camundongos , Adenoma/imunologia , Adenoma/patologia , Linfócitos T CD8-Positivos/imunologia , Cromatina/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Interferon gama/imunologia , Organoides/imunologia , Organoides/patologia , Fatores de Transcrição SOXF/metabolismo , Microambiente Tumoral/imunologia , Mutação , Endoderma/metabolismo , Progressão da Doença
4.
Nat Biotechnol ; 42(3): 424-436, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37169967

RESUMO

Genetically engineered mouse models only capture a small fraction of the genetic lesions that drive human cancer. Current CRISPR-Cas9 models can expand this fraction but are limited by their reliance on error-prone DNA repair. Here we develop a system for in vivo prime editing by encoding a Cre-inducible prime editor in the mouse germline. This model allows rapid, precise engineering of a wide range of mutations in cell lines and organoids derived from primary tissues, including a clinically relevant Kras mutation associated with drug resistance and Trp53 hotspot mutations commonly observed in pancreatic cancer. With this system, we demonstrate somatic prime editing in vivo using lipid nanoparticles, and we model lung and pancreatic cancer through viral delivery of prime editing guide RNAs or orthotopic transplantation of prime-edited organoids. We believe that this approach will accelerate functional studies of cancer-associated mutations and complex genetic combinations that are challenging to construct with traditional models.


Assuntos
Neoplasias Pancreáticas , RNA Guia de Sistemas CRISPR-Cas , Camundongos , Humanos , Animais , Camundongos Transgênicos , Mutação/genética , Neoplasias Pancreáticas/genética , Linhagem Celular , Edição de Genes , Sistemas CRISPR-Cas/genética
5.
Nat Genet ; 55(10): 1686-1695, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709863

RESUMO

DNA mismatch repair deficiency (MMRd) is associated with a high tumor mutational burden (TMB) and sensitivity to immune checkpoint blockade (ICB) therapy. Nevertheless, most MMRd tumors do not durably respond to ICB and critical questions remain about immunosurveillance and TMB in these tumors. In the present study, we developed autochthonous mouse models of MMRd lung and colon cancer. Surprisingly, these models did not display increased T cell infiltration or ICB response, which we showed to be the result of substantial intratumor heterogeneity of mutations. Furthermore, we found that immunosurveillance shapes the clonal architecture but not the overall burden of neoantigens, and T cell responses against subclonal neoantigens are blunted. Finally, we showed that clonal, but not subclonal, neoantigen burden predicts ICB response in clinical trials of MMRd gastric and colorectal cancer. These results provide important context for understanding immune evasion in cancers with a high TMB and have major implications for therapies aimed at increasing TMB.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Animais , Camundongos , Neoplasias Colorretais/genética , Antígenos de Neoplasias/genética , Mutação , Reparo de Erro de Pareamento de DNA/genética , Biomarcadores Tumorais/genética
6.
Genes Dev ; 36(15-16): 936-949, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36175034

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide. Lung adenocarcinoma (LUAD), the most common histological subtype, accounts for 40% of all cases. While existing genetically engineered mouse models (GEMMs) recapitulate the histological progression and transcriptional evolution of human LUAD, they are time-consuming and technically demanding. In contrast, cell line transplant models are fast and flexible, but these models fail to capture the full spectrum of disease progression. Organoid technologies provide a means to create next-generation cancer models that integrate the most advantageous features of autochthonous and transplant-based systems. However, robust and faithful LUAD organoid platforms are currently lacking. Here, we describe optimized conditions to continuously expand murine alveolar type 2 (AT2) cells, a prominent cell of origin for LUAD, in organoid culture. These organoids display canonical features of AT2 cells, including marker gene expression, the presence of lamellar bodies, and an ability to differentiate into the AT1 lineage. We used this system to develop flexible and versatile immunocompetent organoid-based models of KRAS, BRAF, and ALK mutant LUAD. Notably, organoid-based tumors display extensive burden and complete penetrance and are histopathologically indistinguishable from their autochthonous counterparts. Altogether, this organoid platform is a powerful, versatile new model system to study LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Organoides , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
7.
Nature ; 607(7917): 149-155, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35705813

RESUMO

Immunosurveillance of cancer requires the presentation of peptide antigens on major histocompatibility complex class I (MHC-I) molecules1-5. Current approaches to profiling of MHC-I-associated peptides, collectively known as the immunopeptidome, are limited to in vitro investigation or bulk tumour lysates, which limits our understanding of cancer-specific patterns of antigen presentation in vivo6. To overcome these limitations, we engineered an inducible affinity tag into the mouse MHC-I gene (H2-K1) and targeted this allele to the KrasLSL-G12D/+Trp53fl/fl mouse model (KP/KbStrep)7. This approach enabled us to precisely isolate MHC-I peptides from autochthonous pancreatic ductal adenocarcinoma and from lung adenocarcinoma (LUAD) in vivo. In addition, we profiled the LUAD immunopeptidome from the alveolar type 2 cell of origin up to late-stage disease. Differential peptide presentation in LUAD was not predictable by mRNA expression or translation efficiency and is probably driven by post-translational mechanisms. Vaccination with peptides presented by LUAD in vivo induced CD8+ T cell responses in naive mice and tumour-bearing mice. Many peptides specific to LUAD, including immunogenic peptides, exhibited minimal expression of the cognate mRNA, which prompts the reconsideration of antigen prediction pipelines that triage peptides according to transcript abundance8. Beyond cancer, the KbStrep allele is compatible with other Cre-driver lines to explore antigen presentation in vivo in the pursuit of understanding basic immunology, infectious disease and autoimmunity.


Assuntos
Antígenos de Neoplasias , Peptídeos , Proteômica , Células Epiteliais Alveolares/imunologia , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/química , Carcinoma Ductal Pancreático/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Neoplasias Pulmonares/química , Neoplasias Pulmonares/imunologia , Camundongos , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/imunologia , Peptídeos/análise , Peptídeos/química , Peptídeos/imunologia , RNA Mensageiro
8.
Nat Commun ; 13(1): 256, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017504

RESUMO

The GATA4 transcription factor acts as a master regulator of development of multiple tissues. GATA4 also acts in a distinct capacity to control a stress-inducible pro-inflammatory secretory program that is associated with senescence, a potent tumor suppression mechanism, but also operates in non-senescent contexts such as tumorigenesis. This secretory pathway is composed of chemokines, cytokines, growth factors, and proteases. Since GATA4 is deleted or epigenetically silenced in cancer, here we examine the role of GATA4 in tumorigenesis in mouse models through both loss-of-function and overexpression experiments. We find that GATA4 promotes non-cell autonomous tumor suppression in multiple model systems. Mechanistically, we show that Gata4-dependent tumor suppression requires cytotoxic CD8 T cells and partially requires the secreted chemokine CCL2. Analysis of transcriptome data in human tumors reveals reduced lymphocyte infiltration in GATA4-deficient tumors, consistent with our murine data. Notably, activation of the GATA4-dependent secretory program combined with an anti-PD-1 antibody robustly abrogates tumor growth in vivo.


Assuntos
Transporte Biológico/fisiologia , Fator de Transcrição GATA4/metabolismo , Neoplasias/metabolismo , Linfócitos T Citotóxicos/metabolismo , Animais , Anticorpos Monoclonais Humanizados , Quimiocina CCL2/metabolismo , Fator de Transcrição GATA4/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio , Humanos , Evasão da Resposta Imune , Pulmão/patologia , Melanoma , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Transcriptoma
9.
Cancer Discov ; 12(2): 562-585, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34561242

RESUMO

SMARCA4/BRG1 encodes for one of two mutually exclusive ATPases present in mammalian SWI/SNF chromatin remodeling complexes and is frequently mutated in human lung adenocarcinoma. However, the functional consequences of SMARCA4 mutation on tumor initiation, progression, and chromatin regulation in lung cancer remain poorly understood. Here, we demonstrate that loss of Smarca4 sensitizes club cell secretory protein-positive cells within the lung in a cell type-dependent fashion to malignant transformation and tumor progression, resulting in highly advanced dedifferentiated tumors and increased metastatic incidence. Consistent with these phenotypes, Smarca4-deficient primary tumors lack lung lineage transcription factor activities and resemble a metastatic cell state. Mechanistically, we show that Smarca4 loss impairs the function of all three classes of SWI/SNF complexes, resulting in decreased chromatin accessibility at lung lineage motifs and ultimately accelerating tumor progression. Thus, we propose that the SWI/SNF complex via Smarca4 acts as a gatekeeper for lineage-specific cellular transformation and metastasis during lung cancer evolution. SIGNIFICANCE: We demonstrate cell-type specificity in the tumor-suppressive functions of SMARCA4 in the lung, pointing toward a critical role of the cell-of-origin in driving SWI/SNF-mutant lung adenocarcinoma. We further show the direct effects of SMARCA4 loss on SWI/SNF function and chromatin regulation that cause aggressive malignancy during lung cancer evolution.This article is highlighted in the In This Issue feature, p. 275.


Assuntos
Adenocarcinoma de Pulmão/genética , Transformação Celular Neoplásica , DNA Helicases/genética , Neoplasias Pulmonares/genética , Metástase Neoplásica , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adenocarcinoma de Pulmão/secundário , Animais , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/patologia , Camundongos
10.
Nat Cancer ; 2(10): 1071-1085, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34738089

RESUMO

Immune evasion is a hallmark of cancer, and therapies that restore immune surveillance have proven highly effective in cancers with high tumor mutation burden (TMB) (e.g., those with microsatellite instability (MSI)). Whether low TMB cancers, which are largely refractory to immunotherapy, harbor potentially immunogenic neoantigens remains unclear. Here, we show that tumors from all patients with microsatellite stable (MSS) colorectal cancer (CRC) express clonal predicted neoantigens despite low TMB. Unexpectedly, these neoantigens are broadly expressed at lower levels compared to those in MSI CRC. Using a versatile platform for modulating neoantigen expression in CRC organoids and transplantation into the distal colon of mice, we show that low expression precludes productive cross priming and drives immediate T cell dysfunction. Strikingly, experimental or therapeutic rescue of priming rendered T cells capable of controlling tumors with low neoantigen expression. These findings underscore a critical role of neoantigen expression level in immune evasion and therapy response.


Assuntos
Neoplasias Colorretais , Linfócitos T , Animais , Antígenos de Neoplasias/genética , Neoplasias Colorretais/genética , Humanos , Imunoterapia , Camundongos , Instabilidade de Microssatélites
11.
Cell ; 184(19): 4996-5014.e26, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34534464

RESUMO

CD8 T cell responses against different tumor neoantigens occur simultaneously, yet little is known about the interplay between responses and its impact on T cell function and tumor control. In mouse lung adenocarcinoma, we found that immunodominance is established in tumors, wherein CD8 T cell expansion is predominantly driven by the antigen that most stably binds MHC. T cells responding to subdominant antigens were enriched for a TCF1+ progenitor phenotype correlated with response to immune checkpoint blockade (ICB) therapy. However, the subdominant T cell response did not preferentially benefit from ICB due to a dysfunctional subset of TCF1+ cells marked by CCR6 and Tc17 differentiation. Analysis of human samples and sequencing datasets revealed that CCR6+ TCF1+ cells exist across human cancers and are not correlated with ICB response. Vaccination eliminated CCR6+ TCF1+ cells and dramatically improved the subdominant response, highlighting a strategy to optimally engage concurrent neoantigen responses against tumors.


Assuntos
Adenocarcinoma de Pulmão/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Neoplasias Pulmonares/imunologia , Células-Tronco/imunologia , Sequência de Aminoácidos , Animais , Antígeno CTLA-4/metabolismo , Epitopos , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/patologia , Camundongos , Peptídeos/química , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , RNA-Seq , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CCR6/metabolismo , Análise de Célula Única , Vacinação
12.
Cancer Cell ; 39(10): 1342-1360.e14, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34358448

RESUMO

The CD155/TIGIT axis can be co-opted during immune evasion in chronic viral infections and cancer. Pancreatic adenocarcinoma (PDAC) is a highly lethal malignancy, and immune-based strategies to combat this disease have been largely unsuccessful to date. We corroborate prior reports that a substantial portion of PDAC harbors predicted high-affinity MHC class I-restricted neoepitopes and extend these findings to advanced/metastatic disease. Using multiple preclinical models of neoantigen-expressing PDAC, we demonstrate that intratumoral neoantigen-specific CD8+ T cells adopt multiple states of dysfunction, resembling those in tumor-infiltrating lymphocytes of PDAC patients. Mechanistically, genetic and/or pharmacologic modulation of the CD155/TIGIT axis was sufficient to promote immune evasion in autochthonous neoantigen-expressing PDAC. Finally, we demonstrate that the CD155/TIGIT axis is critical in maintaining immune evasion in PDAC and uncover a combination immunotherapy (TIGIT/PD-1 co-blockade plus CD40 agonism) that elicits profound anti-tumor responses in preclinical models, now poised for clinical evaluation.


Assuntos
Evasão da Resposta Imune/imunologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias Pancreáticas/imunologia , Receptores Virais/imunologia , Animais , Humanos , Camundongos , Neoplasias Pancreáticas
13.
Nat Commun ; 12(1): 4288, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257283

RESUMO

The commonly mutated human KRAS oncogene encodes two distinct KRAS4A and KRAS4B proteins generated by differential splicing. We demonstrate here that coordinated regulation of both isoforms through control of splicing is essential for development of Kras mutant tumors. The minor KRAS4A isoform is enriched in cancer stem-like cells, where it responds to hypoxia, while the major KRAS4B is induced by ER stress. KRAS4A splicing is controlled by the DCAF15/RBM39 pathway, and deletion of KRAS4A or pharmacological inhibition of RBM39 using Indisulam leads to inhibition of cancer stem cells. Our data identify existing clinical drugs that target KRAS4A splicing, and suggest that levels of the minor KRAS4A isoform in human tumors can be a biomarker of sensitivity to some existing cancer therapeutics.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células A549 , Animais , Western Blotting , Proliferação de Células , Citometria de Fluxo , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas de Ligação a RNA/genética
14.
Cancer Cell ; 38(2): 212-228.e13, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32707078

RESUMO

Regulatory networks that maintain functional, differentiated cell states are often dysregulated in tumor development. Here, we use single-cell epigenomics to profile chromatin state transitions in a mouse model of lung adenocarcinoma (LUAD). We identify an epigenomic continuum representing loss of cellular identity and progression toward a metastatic state. We define co-accessible regulatory programs and infer key activating and repressive chromatin regulators of these cell states. Among these co-accessibility programs, we identify a pre-metastatic transition, characterized by activation of RUNX transcription factors, which mediates extracellular matrix remodeling to promote metastasis and is predictive of survival across human LUAD patients. Together, these results demonstrate the power of single-cell epigenomics to identify regulatory programs to uncover mechanisms and key biomarkers of tumor progression.


Assuntos
Adenocarcinoma/genética , Modelos Animais de Doenças , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais/genética , Análise de Célula Única/métodos
15.
Sci Transl Med ; 12(537)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238573

RESUMO

Lung cancer is the leading cause of cancer-related death, and patients most commonly present with incurable advanced-stage disease. U.S. national guidelines recommend screening for high-risk patients with low-dose computed tomography, but this approach has limitations including high false-positive rates. Activity-based nanosensors can detect dysregulated proteases in vivo and release a reporter to provide a urinary readout of disease activity. Here, we demonstrate the translational potential of activity-based nanosensors for lung cancer by coupling nanosensor multiplexing with intrapulmonary delivery and machine learning to detect localized disease in two immunocompetent genetically engineered mouse models. The design of our multiplexed panel of sensors was informed by comparative transcriptomic analysis of human and mouse lung adenocarcinoma datasets and in vitro cleavage assays with recombinant candidate proteases. Intrapulmonary administration of the nanosensors to a Kras- and Trp53-mutant lung adenocarcinoma mouse model confirmed the role of metalloproteases in lung cancer and enabled accurate detection of localized disease, with 100% specificity and 81% sensitivity. Furthermore, this approach generalized to an alternative autochthonous model of lung adenocarcinoma, where it detected cancer with 100% specificity and 95% sensitivity and was not confounded by lipopolysaccharide-driven lung inflammation. These results encourage the clinical development of activity-based nanosensors for the detection of lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Peptídeo Hidrolases , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Animais , Genes ras , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Camundongos , Peptídeo Hidrolases/urina , Urinálise
17.
Nat Cancer ; 1(6): 589-602, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-34414377

RESUMO

Approximately 20-30% of human lung adenocarcinomas (LUAD) harbor loss-of-function (LOF) mutations in Kelch-like ECH Associated-Protein 1 (KEAP1), which lead to hyperactivation of the nuclear factor, erythroid 2-like 2 (NRF2) antioxidant pathway and correlate with poor prognosis1-3. We previously showed that Keap1 mutation accelerates KRAS-driven LUAD and produces a marked dependency on glutaminolysis4. To extend the investigation of genetic dependencies in the context of Keap1 mutation, we performed a druggable genome CRISPR-Cas9 screen in Keap1-mutant cells. This analysis uncovered a profound Keap1 mutant-specific dependency on solute carrier family 33 member 1 (Slc33a1), an endomembrane-associated protein with roles in autophagy regulation5, as well as a series of functionally-related genes implicated in the unfolded protein response. Targeted genetic and biochemical experiments using mouse and human Keap1-mutant tumor lines, as well as preclinical genetically-engineered mouse models (GEMMs) of LUAD, validate Slc33a1 as a robust Keap1-mutant-specific dependency. Furthermore, unbiased genome-wide CRISPR screening identified additional genes related to Slc33a1 dependency. Overall, our study provides a strong rationale for stratification of patients harboring KEAP1-mutant or NRF2-hyperactivated tumors as likely responders to targeted SLC33A1 inhibition and underscores the value of integrating functional genetic approaches with GEMMs to identify and validate genotype-specific therapeutic targets.


Assuntos
Adenocarcinoma de Pulmão , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares , Proteínas de Membrana Transportadoras , Adenocarcinoma de Pulmão/genética , Animais , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Mutação , Fator 2 Relacionado a NF-E2/genética
18.
Sci Transl Med ; 11(517)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694929

RESUMO

Small cell lung cancer (SCLC) is an aggressive lung cancer subtype with extremely poor prognosis. No targetable genetic driver events have been identified, and the treatment landscape for this disease has remained nearly unchanged for over 30 years. Here, we have taken a CRISPR-based screening approach to identify genetic vulnerabilities in SCLC that may serve as potential therapeutic targets. We used a single-guide RNA (sgRNA) library targeting ~5000 genes deemed to encode "druggable" proteins to perform loss-of-function genetic screens in a panel of cell lines derived from autochthonous genetically engineered mouse models (GEMMs) of SCLC, lung adenocarcinoma (LUAD), and pancreatic ductal adenocarcinoma (PDAC). Cross-cancer analyses allowed us to identify SCLC-selective vulnerabilities. In particular, we observed enhanced sensitivity of SCLC cells toward disruption of the pyrimidine biosynthesis pathway. Pharmacological inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in this pathway, reduced the viability of SCLC cells in vitro and strongly suppressed SCLC tumor growth in human patient-derived xenograft (PDX) models and in an autochthonous mouse model. These results indicate that DHODH inhibition may be an approach to treat SCLC.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Terapia de Alvo Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/enzimologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Animais , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , DCMP Desaminase/metabolismo , Di-Hidro-Orotato Desidrogenase , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Neoplasias Pancreáticas/metabolismo , Pirimidinas/biossíntese , Carcinoma de Pequenas Células do Pulmão/patologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
19.
Nature ; 517(7535): 489-92, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25363767

RESUMO

Next-generation sequencing of human tumours has refined our understanding of the mutational processes operative in cancer initiation and progression, yet major questions remain regarding the factors that induce driver mutations and the processes that shape mutation selection during tumorigenesis. Here we performed whole-exome sequencing on adenomas from three mouse models of non-small-cell lung cancer, which were induced either by exposure to carcinogens (methyl-nitrosourea (MNU) and urethane) or by genetic activation of Kras (Kras(LA2)). Although the MNU-induced tumours carried exactly the same initiating mutation in Kras as seen in the Kras(LA2) model (G12D), MNU tumours had an average of 192 non-synonymous, somatic single-nucleotide variants, compared with only six in tumours from the Kras(LA2) model. By contrast, the Kras(LA2) tumours exhibited a significantly higher level of aneuploidy and copy number alterations compared with the carcinogen-induced tumours, suggesting that carcinogen-induced and genetically engineered models lead to tumour development through different routes. The wild-type allele of Kras has been shown to act as a tumour suppressor in mouse models of non-small-cell lung cancer. We demonstrate that urethane-induced tumours from wild-type mice carry mostly (94%) Kras Q61R mutations, whereas those from Kras heterozygous animals carry mostly (92%) Kras Q61L mutations, indicating a major role for germline Kras status in mutation selection during initiation. The exome-wide mutation spectra in carcinogen-induced tumours overwhelmingly display signatures of the initiating carcinogen, while adenocarcinomas acquire additional C > T mutations at CpG sites. These data provide a basis for understanding results from human tumour genome sequencing, which has identified two broad categories of tumours based on the relative frequency of single-nucleotide variations and copy number alterations, and underline the importance of carcinogen models for understanding the complex mutation spectra seen in human cancers.


Assuntos
Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Genes ras/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Mutação/genética , Proteína Oncogênica p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/genética , Animais , Carcinógenos/toxicidade , Carcinoma Pulmonar de Células não Pequenas/induzido quimicamente , Carcinoma Pulmonar de Células não Pequenas/genética , Variações do Número de Cópias de DNA/genética , Progressão da Doença , Feminino , Instabilidade Genômica/genética , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Metilnitrosoureia/toxicidade , Camundongos , Modelos Genéticos , Mutação Puntual/genética , Uretana/toxicidade
20.
Chin J Cancer ; 32(2): 63-70, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22776234

RESUMO

Mutational activation of KRAS is a common oncogenic event in lung cancer and other epithelial cancer types. Efforts to develop therapies that counteract the oncogenic effects of mutant KRAS have been largely unsuccessful, and cancers driven by mutant KRAS remain among the most refractory to available treatments. Studies undertaken over the past decades have produced a wealth of information regarding the clinical relevance of KRAS mutations in lung cancer. Mutant Kras-driven mouse models of cancer, together with cellular and molecular studies, have provided a deeper appreciation for the complex functions of KRAS in tumorigenesis. However, a much more thorough understanding of these complexities is needed before clinically effective therapies targeting mutant KRAS-driven cancers can be achieved.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/terapia , Transformação Celular Neoplásica/genética , Suscetibilidade a Doenças , Técnicas de Silenciamento de Genes , Terapia Genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Camundongos , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...