Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931903

RESUMO

The present study compared vacuum drum drying (VDD) and conventional spray drying (SD) for solidifying crystalline ABT-199 nanosuspensions into redispersible oral drug products. The aim was to optimize formulation compositions and process conditions to maintain nanoparticle size after tablet redispersion. The impact of drug load (22%, 33%, 44%) and type of drying protectant (mannitol, mannitol/trehalose mix (1:1), trehalose) on redispersibility and material powder properties were investigated. Moreover, compression analysis was performed assessing the influence of compaction pressure on primary nanocrystal redispersibility and tablet disintegration. Higher drug loads and lower drying protectant levels resulted in particle growth, confirming a drug load dependence on redispersibility behavior. Notably, all drying protectants showed similar protection properties at properly chosen drying process parameters (Tg-dependent), except when VDD was used for mannitol formulations. Differences between the applied drying processes were observed in terms of downstream processing and tabletability: mannitol-containing formulations solidified via VDD showed an improved processability compared to formulations with trehalose. In conclusion, VDD is a promising drying technique that offers advantageous downstream processability compared to SD and represents an attractive novel processing technology for the pharmaceutical industry. As demonstrated in the present study, VDD combines higher yields with a leaner manufacturing process flow. The improved bulk properties provide enhanced tabletability and enable direct compression.

2.
Pharmaceutics ; 15(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37514164

RESUMO

Coupling biorelevant in vitro dissolution with in silico physiological-based pharmacokinetic (PBPK) tools represents a promising method to describe and predict the in vivo performance of drug candidates in formulation development including non-passive transport, prodrug activation, and first-pass metabolism. The objective of the present study was to assess the predictability of human pharmacokinetics by using biphasic dissolution results obtained with the previously established BiPHa+ assay and PBPK tools. For six commercial drug products, formulated by different enabling technologies, the respective organic partitioning profiles were processed with two PBPK in silico modeling tools, namely PK-Sim and GastroPlus®, similar to extended-release dissolution profiles. Thus, a mechanistic dissolution/precipitation model of the assessed drug products was not required. The developed elimination/distribution models were used to simulate the pharmacokinetics of the evaluated drug products and compared with available human data. In essence, an in vitro to in vivo extrapolation (IVIVE) was successfully developed. Organic partitioning profiles obtained from the BiPHa+ dissolution analysis enabled highly accurate predictions of the pharmacokinetic behavior of the investigated drug products. In addition, PBPK models of (pro-)drugs with pronounced first-pass metabolism enabled adjustment of the solely passive diffusion predicting organic partitioning profiles, and increased prediction accuracy further.

3.
Pharmaceutics ; 14(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35631499

RESUMO

The present study focuses on the compaction behavior of polymeric excipients during compression in comparison to nonpolymeric excipients and its consequences on commonly used Heckel analysis. Compression analysis at compaction pressures (CPs) from 50 to 500 MPa was performed using a compaction simulator. This study demonstrates that the particle density, measured via helium pycnometer (ρpar), of polymeric excipients (Kollidon®VA64, Soluplus®, AQOAT®AS-MMP, Starch1500®, Avicel®PH101) was already exceeded at low CPs (<200 MPa), whereas the ρpar was either never reached for brittle fillers such as DI-CAFOS®A60 and tricalcium citrate or exceeded at CPs above 350 MPa (FlowLac®100, Pearlitol®100SD). We hypothesized that the threshold for exceeding ρpar is linked with predominantly elastic deformation. This was confirmed by the start of linear increase in elastic recovery in-die (ERin-die) with exceeding particle density, and in addition, by the applicability in calculating the elastic modulus via the equation of the linear increase in ERin-die. Last, the evaluation of "density under pressure" as an alternative to the ρpar for Heckel analysis showed comparable conclusions for compression behavior based on the calculated yield pressures. However, the applicability of Heckel analysis for polymeric excipients was questioned in principle. In conclusion, the knowledge of the threshold provides guidance for the selection of suitable excipients in the formulation development to mitigate the risk of tablet defects related to stored elastic energy, such as capping and lamination.

4.
AAPS PharmSciTech ; 23(5): 137, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534700

RESUMO

The present study explored vacuum drum drying (VDD) as potential drying technique for the solidification of crystalline ritonavir nanosuspensions prepared by wet-ball milling. In detail, the impact of drying protectants (mannitol, lactose, trehalose) added to the ritonavir nanosuspension was assessed in dependence of the drum temperature with respect to processibility via VDD, resulting intermediate powder properties, remaining nanoparticulate redispersibility and crystallinity. A clear impact of the glass transition temperature (Tg) of the drying protectant on the redispersibility/crystallinity of the VDD intermediate was observed. Increased Tg of the drying protectant was associated with improved redispersibility/crystallinity at a defined drum temperature. Consequently, the high Tg-substance trehalose and lactose showed a better performance than mannitol at higher drum temperatures. However, the processability and related powder properties were not in accordance with this observation. Mannitol containing formulations showed superior processibility to those containing trehalose/lactose. Moreover, the impact of the tableting and encapsulation process on the redispersibility of the VDD intermediate was studied for a selected formulation. Neither process demonstrated a negative impact on redispersibility. In conclusion, vacuum drum drying is a promising drying technique for the solidification of nanosuspensions to result in dried powder still containing ritonavir nanoparticles while demonstrating acceptable to good downstream processibility to tablets/capsules.


Assuntos
Nanopartículas , Ritonavir , Liofilização/métodos , Lactose , Manitol , Nanopartículas/química , Tamanho da Partícula , Pós , Suspensões , Trealose , Vácuo
5.
Int J Pharm X ; 3: 100102, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34877525

RESUMO

The present study explored vacuum drum drying (VDD) as an alternative technology for amorphous solid dispersions (ASDs) manufacture compared to hot-melt extrusion (HME) and spray drying (SD) focusing on downstream processability (powder properties, compression behavior and tablet performance). Ritonavir (15% w/w) in a copovidone/sorbitan monolaurate matrix was used as ASD model system. The pure ASDs and respective tablet blends (TB) (addition of filler, glidant, lubricant) were investigated. Milled extrudate showed superior powder properties (e.g., flowability, bulk density) compared to VDD and SD, which could be compensated by the addition of 12.9% outer phase. Advantageously, the VDD intermediate was directly compressible, whereas the SD material was not, resulting in tablets with defects based on a high degree of elastic recovery. Compared to HME, the VDD material showed superior tabletability when formulated as TB, resulting in stronger compacts at even lower solid fraction values. Despite the differences in tablet processing, tablets showed similar tablet performance in terms of disintegration and dissolution independent of the ASD origin. In conclusion, VDD is a valid alternative to manufacture ASDs. VDD offered advantageous downstream processability compared to SD: less solvents and process steps required (no second drying), improved powder properties and suitable for direct compression.

6.
Pharmaceutics ; 13(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671597

RESUMO

The present study intended to confirm the in vivo relevance of the BiPHa+ biphasic dissolution assay using a single set of assay parameters. Herein, we evaluated five commercial drug products formulated by various enabling formulation principles under fasted conditions using the BiPHa+ assay. The in vitro partitioning profiles in the organic phase were compared with human pharmacokinetic data obtained from literature. In the first part, a meaningful in vitro dose of the formulations was assessed by determining the maximum drug concentration in the artificial absorption sink during dissolution (organic 1-decanol layer, Cdec,max). Then, the maximum concentration of the partitioned drug in the organic layer was correlated with the in vivo fraction absorbed, which was derived from published human pharmacokinetic data. Fraction absorbed represents the percentage, which is absorbed from the intestine without considering first pass. It was found that the maximum drug concentration in the organic phase obtained from an in vitro dose of ten milligrams, which is equivalent to 15-25 µmol of the respective drug, led to the highest congruency with the fraction absorbed in vivo. In the second part, the in vivo relevance of the BiPHa+ dissolution data was verified by establishing a shared in vitro/in vivo relationship including all formulations. Based on the in vitro kinetics of the BiPHa+ experiments human in vivo plasma profiles were predicted using convolutional modelling approach. Subsequently, the calculated pharmacokinetic profiles were compared with in vivo performance of the studied drug products to assess the predictive power of the BiPHa+ assay. The BiPHa+ assay demonstrated biorelevance for the investigated in vitro partitioning profiles using a single set of assay parameters, which was verified based on human pharmacokinetic data of the five drug products.

7.
Int J Pharm ; 596: 120233, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33484914

RESUMO

In this study, a novel solvent-evaporation based technology to manufacture amorphous solid dispersions (ASDs) called vacuum drum drying (VDD) was assessed in comparison to the conventional technologies hot-melt extrusion (HME) and spray drying (SD). Ritonavir (15%w/w) embedded in copovidone/sorbitan monolaurate was used to investigate the impact on the ASD quality, material properties and in-vitro dissolution. All ASDs met the critical quality criteria: absence of drug substance related crystallinity, residual solvents below ICH limit (SD, VDD) and degradation products within specification limits. Clear differences in material properties such as particle morphology and size distribution, powder densities and flowability properties were observed. Overall, the milled extrudate showed superior material properties in terms of downstream processability. The VDD intermediate performed slightly better in terms of flowability and electrostatic behavior compared to the spray dried while showing comparably unfavorable densities. However, the dissolution data suggested no significant difference between the ASDs prepared by HME, SD, and VDD and thus, no change in bioavailability is expected. In conclusion, the VDD technology might be a viable alternative to manufacture ASDs - especially for thermosensitive and shear-sensitive compounds with potential to process formulations with high solid loads and viscosities while exhibiting higher throughputs at a lower footprint.


Assuntos
Tecnologia de Extrusão por Fusão a Quente , Secagem por Atomização , Composição de Medicamentos , Temperatura Alta , Solubilidade , Solventes , Vácuo
8.
Pharmaceutics ; 12(3)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155962

RESUMO

Biphasic dissolution systems achieved good predictability for the in vivo performance of several formulations of poorly water-soluble drugs by characterizing dissolution, precipitation, re-dissolution, and absorption. To achieve a high degree of predictive performance, acceptor media, aqueous phase composition, and the apparatus type have to be carefully selected. Hence, a combination of 1-decanol and an optimized buffer system are proposed as a new, one-vessel biphasic dissolution method (BiPHa+). The BiPHa+ was developed to combine the advantages of the well-described biorelevance of the United States Pharmacopeia (USP) apparatus II coupled with USP apparatus IV and a small-scale, one-vessel method. The BiPHa+ was designed for automated medium addition and pH control of the aqueous phase. In combination with the diode array UV-spectrophotometer, the system was able to determine the aqueous and the organic medium simultaneously, even if scattering or overlapping of spectra occurred. At controlled hydrodynamic conditions, the relative absorption area, the ratio between the organic and aqueous phase, and the selected drug concentrations were identified to be the discriminating factors. The performance of a hot-melt extruded ritonavir-containing amorphous solid dispersion (ritonavir-ASD) was compared in fasted-state dissolution media leading to different dissolution-partitioning profiles depending on the content of bile salts. An advanced kinetic model for ASD-based well described all phenomena from dispersing of the ASD to the partitioning of the dissolved ritonavir into the organic phase.

9.
J Pharm Sci ; 103(6): 1779-86, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24764046

RESUMO

Our aim was to explore the influence of micelles and microparticles emerging in aqueous dispersions of amorphous solid dispersions (ASDs) on molecular/apparent solubility and Caco-2 permeation. The ASD, prepared by hot-melt extrusion, contained the poorly soluble model drug ABT-102, a hydrophilic polymer, and three surfactants. Aqueous dispersions of the ASD were investigated at two concentrations, one above and one close to the critical micelle concentration of the surfactants blend in the extrudate. Micelles were detected at the higher concentration and no micelles at the lower concentration. Apparent solubility of ABT-102 was 20-fold higher in concentrated than in diluted dispersions, because of micelles. In contrast, Caco-2 permeation of ABT-102 was independent of the ASD concentration, but three times faster than that of crystalline suspensions. Molecular solubility of ABT-102 (equilibrium dialysis) was also independent of the ASD concentration, but by a factor 2 higher than crystalline ABT-102. The total amount of ABT-102 accumulated in the acceptor during Caco-2 experiments exceeded the initial amount of molecularly dissolved drug in the donor. This may indicate that dissolution of amorphous microparticles present in aqueous dispersions induces lasting supersaturation maintaining enhanced permeation. The hypothesis is supported by a slower drug permeation when the microparticles were removed.


Assuntos
Indazóis/farmacocinética , Ureia/análogos & derivados , Água/química , Células CACO-2 , Humanos , Solubilidade , Ureia/farmacocinética
10.
Int J Nanomedicine ; 7: 5757-68, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166440

RESUMO

Amorphous solid dispersions (ASDs) are a promising formulation approach for poorly soluble active pharmaceutical ingredients (APIs), because they ideally enhance both dissolution rate and solubility. However, the mechanism behind this is not understood in detail. In the present study, we investigated the supramolecular and the nano/microparticulate structures that emerge spontaneously upon dispersion of an ASD in aqueous medium and elucidated their influence on solubility. The ASD, prepared by hot melt extrusion, contained the poorly soluble ABT-102 (solubility in buffer, 0.05 µg/mL), a hydrophilic polymer, and three surfactants. The apparent solubility of ABT-102 from the ASD-formulation was enhanced up to 200 times in comparison to crystalline ABT-102. At the same time, the molecular solubility, as assessed by inverse equilibrium dialysis, was enhanced two times. Asymmetrical flow field-flow fractionation in combination with a multiangle light-scattering detector, an ultraviolet detector, and a refractometer enabled us to separate and identify the various supramolecular assemblies that were present in the aqueous dispersions of the API-free ASD (placebo) and of binary/ternary blends of the ingredients. Thus, the supramolecular assemblies with a molar mass between 20,000 and 90,000 could be assigned to the polyvinylpyrrolidone/vinyl acetate 64, while two other kinds of assemblies were assigned to different surfactant assemblies (micelles). The amount of ABT-102 remaining associated with each of the assemblies upon fractionation was quantified offline with high-performance liquid chromatography-ultraviolet-visible. The polymeric and the micellar fraction contributed to the substantial increase in apparent solubility of ABT-102. Furthermore, a microparticulate fraction was isolated by centrifugation and analyzed by scanning electron microscopy, X-ray scattering, and infrared spectroscopy. The microparticles were found to be amorphous and to contain two of the surfactants besides ABT-102 as the main component. The amorphous microparticles are assumed to be the origin of the observed increase in molecular solubility ("true" supersaturation).


Assuntos
Coloides/química , Indazóis/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Material Particulado/química , Ureia/análogos & derivados , Água/química , Difusão , Teste de Materiais , Microesferas , Tamanho da Partícula , Solubilidade , Ureia/química
11.
Int J Pharm ; 437(1-2): 288-93, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22951865

RESUMO

Amorphous solid dispersions (ASDs) represent a promising formulation approach for poorly soluble drugs. We explored the formulation-related impact of ASDs on permeation rate, apparent solubility and molecular solubility of the poorly soluble drug ABT-102. The influence of fasted state simulated intestinal fluid (FaSSIF) as dispersion medium was also studied. ASDs were prepared by hot-melt extrusion. Permeation rate was assessed by the Caco-2 transwell assay. Cell viability and barrier integrity were assured by AlamarBlue©, TEER and permeability of the hydrophilic marker carboxyfluorescein. Apparent solubility and molecular solubility were evaluated by using centrifugation and inverse dialysis, respectively. The in vitro permeation rate of ABT-102 from aqueous dispersions of the ASD was found 4 times faster than that from the dispersions of the crystals, while apparent solubility and molecular solubility of ABT-102 were increased. Yet, a further increase in apparent solubility due to micellar solubilization as observed when dispersing the ASD in FaSSIF, did not affect molecular solubility or permeation rate. Overall, a good correlation between permeation rate and molecular solubility but not apparent solubility was seen.


Assuntos
Indazóis/química , Ureia/análogos & derivados , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Formas de Dosagem , Humanos , Indazóis/administração & dosagem , Permeabilidade , Solubilidade , Canais de Cátion TRPV/antagonistas & inibidores , Ureia/administração & dosagem , Ureia/química
12.
Eur J Pharm Sci ; 47(1): 16-20, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22579958

RESUMO

The poorly water-soluble drug ABT-102, a potent TRPV1 (transient receptor potential cation channel subfamily V member 1) antagonist, was investigated in terms of its solubility and dissolution-permeation rate across Caco-2 cell monolayers in the presence and absence of fasted state simulated intestinal fluid (FaSSIF). ABT-102 showed a more than 30-fold higher apparent solubility in FaSSIF, compared to Hank's balanced salt solution (HBSS). On the other hand, the amount of truly dissolved API in the suspension, as assessed by inverse dialysis, was found hardly influenced by FaSSIF. Neither the drug nor FaSSIF adversely affected cell viability or integrity of the Caco-2 monolayer. P-gp-inhibition experiments confirmed that the drug was not a substrate of the export pump. The flux of ABT-102 across the Caco-2 barrier was found virtually the same in FaSSIF and in buffer, i.e. in vitro overall dissolution-/permeation rate of ABT-102 from suspensions appears not affected by its enhanced apparent solubility due to association with TC/PC-micelles.


Assuntos
Indazóis/química , Indazóis/farmacocinética , Secreções Intestinais/química , Secreções Intestinais/metabolismo , Ureia/análogos & derivados , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Soluções Tampão , Células CACO-2 , Diálise/métodos , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Intestinos/química , Micelas , Solubilidade , Soluções/química , Suspensões/química , Ureia/química , Ureia/farmacocinética , Água/química
13.
J Control Release ; 119(1): 41-51, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-17346845

RESUMO

Catheter-based local delivery of biodegradable nanoparticles (NP) with sustained release characteristics represents a therapeutic approach to reduce restenosis. Paclitaxel-loaded NP consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) (PVA-g-PLGA) with varying PLGA chain length as well as poly(lactide-co-glycolide) (PLGA), were prepared by a solvent evaporation technique. NP of <180 nm in diameter characterized by photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are spherical and show smooth surfaces. Yields typically range from 80 to 95% with encapsulation efficiencies between 77 and 87%. The extent of initial in vitro paclitaxel release was affected by the PVA-g-PLGA composition. Blank nanoparticles from PVA(300)-g-PLGA(30) and PVA(300)-g-PLGA(15) showed excellent biocompatibility in rabbit vascular smooth muscle cells (RbVSMC) at polymer concentrations of 0.37 mg/ml. Paclitaxel-loaded NP have an increased antiproliferative effect on cells in comparison to free drug. Confocal laser scanning microscopy of RbVSMC confirmed cellular uptake of nanoparticles composed of fluorescently labeled PVA(300)-g-PLGA(15) loaded with Oregon Green labeled paclitaxel. Cells showed a clearly increased fluorescence activity with a co-localization of paclitaxel and polymer nanoparticles during incubation with particle suspension. To evaluate the antirestenotic effect in vivo, paclitaxel-loaded nanoparticles were administered locally to the wall of balloon-injured rabbit iliac arteries using a porous balloon catheter. As a result a 50% reduction in neointimal area in vessel segments treated with paclitaxel-loaded nanoparticles compared to control vessel segments could be observed (local paclitaxel nanoparticle treated segments 0.80+/-0.19 mm(2), control segments 1.58+/-0.6 mm(2); p<0.05).


Assuntos
Constrição Patológica/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Ácido Láctico/administração & dosagem , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Polímeros/administração & dosagem , Animais , Células Cultivadas , Constrição Patológica/metabolismo , Oclusão de Enxerto Vascular/tratamento farmacológico , Oclusão de Enxerto Vascular/metabolismo , Artéria Ilíaca/efeitos dos fármacos , Artéria Ilíaca/metabolismo , Ácido Láctico/farmacocinética , Masculino , Paclitaxel/farmacocinética , Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/farmacocinética , Coelhos
14.
J Control Release ; 111(1-2): 235-46, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16466824

RESUMO

Although substantial progress in catheter and stent design has contributed to the success of percutaneous transluminal angioplasty (PTA) of atherosclerotic disease, the incidence of restenosis caused by in-stent neointimal hyperplasia remains a serious problem. Therefore, stents with a non-degradable polymer coating showing controlled release of active ingredients have become an attractive option for the site-specific delivery of anti-restenotic agents. Biodegradable coatings using polyesters, namely poly(lactic-co-glycolic acid) (PLGA) and different poly(vinyl alcohol)-graft-poly(lactic-co-glycolic acid) (PVA-g-PLGA) as paclitaxel-eluting stent coating materials were investigated here to evaluate their influence on the release kinetic. Whereas PLGA showed sigmoid release behavior, the paclitaxel release from PVA-g-PLGA films was continuous over 40 days without initial drug burst. Wide angle X-ray diffraction confirmed that paclitaxel is dissolved in the polymer matrix. Paclitaxel crystallization can be observed at a drug load of > or =10%. The effect of drug loading on polymer degradation was studied in films prepared from PVA300-g-PLGA30 with paclitaxel loadings of 5% and 15% over a time period of 6 weeks. The results suggest a surface-like erosion mechanism in films. A model stent (Jostent peripheral) coated with Parylene N, a poly(p-xylylene) (PPX) derivate, was covered with a second layer of PVA300-g-PLGA15, and PVA300-g-PLGA30 by using airbrush method. Morphology of coated stents, and film integrity after expansion from 3.12 to 5 mm was investigated by scanning electron microscopy (SEM). The devices resisted mechanical stress during stent expansion and merit further investigation under in vivo conditions.


Assuntos
Portadores de Fármacos/química , Ácido Láctico/química , Paclitaxel/farmacocinética , Ácido Poliglicólico/química , Polímeros/química , Álcool de Polivinil/química , Stents , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Materiais Biocompatíveis/química , Biodegradação Ambiental , Portadores de Fármacos/síntese química , Microscopia Eletrônica de Varredura , Paclitaxel/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tecnologia Farmacêutica/instrumentação , Tecnologia Farmacêutica/métodos , Fatores de Tempo , Difração de Raios X
15.
Eur J Pharm Biopharm ; 58(1): 161-8, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15207550

RESUMO

Catheter-based local delivery of drug loaded nanoparticles agents offers a potential therapeutic approach to reducing restenosis. However, high delivery pressures and large volumes of infusates may cause severe vascular damage and increase intimal thickening. Therefore, we investigated the penetration pattern and vessel wall integrity of fluorescence-labelled nanoparticles (217 nm in diameter) into the non-atherosclerotic aorta abdominalis of New Zealand white rabbits in dependence of the volume (2.5 and 5 ml) and concentration (0.5 and 1 mg/ml) of the nanoparticle suspension, as well as the infusion pressure (2 and 4 atm) using a channelled balloon catheter (SCIMED REMEDY model RC 20/2.5). The location and penetration characteristics of nanoparticles in the arterial vessel wall were visualized using confocal laser scanning microscopy and transmission electron microscopy (TEM). Catheter design and infusion pressure form a radial particle stream through intima and media into the adventitial layer of the aorta abdominalis. Infusion pressures of 4 atm in combination with high particle concentrations lead to effective nanoparticle delivery without severe vessel wall disruptions. Endothelium of the treated vessel segments was slightly affected during catheter insertion showing partly denudation of the innermost cell layer. TEM micrographs underlines transport functional properties of the vasa vasorum inside the vessel wall. Consequently, local delivery efficiency of nanoparticulate carriers is critically affected by infusion pressure, and concentration of carrier suspensions. These factors need to be taken into consideration for the design of in vivo experiments.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Cateterismo/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/ultraestrutura , Cateterismo/instrumentação , Sistemas de Liberação de Medicamentos/instrumentação , Masculino , Coelhos
16.
AAPS PharmSci ; 4(4): E41, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12646012

RESUMO

Restenosis remains the major limitation of percutaneous transluminal angioplasty (PTA) and stenting in the treatment of patients with atherosclerotic disease. Catheter-based local delivery of pharmacologic agents offers a potential therapeutic approach to reducing restenosis and minimizing undesirable systemic side effects. However, the intramural retention of liquid agents is low. Therefore, to achieve a sustained and regional release of the therapeutic agent it must be encapsulated in nanoparticle carrier systems. The purpose of this study was to investigate the size dependence of the penetration of nanoparticles after local delivery into the vessel wall of the aorta abdominalis of New Zealand white rabbits. Two milliliters of a 0.025% fluorescence-labeled polystyrene nanoparticle suspension with diameters ranging from 110 to 514 nm were infused at 2 atm and at constant PTA pressure of 8 atm into the aorta abdominalis. After the infused segments were removed, the location of nanoparticles was visualized using confocal laser scanning microscopy and transmission electron microscopy. The study demonstrates a size-dependent nanoparticle penetration into the intact vessel wall. While nanoparticles of about 100 and 200 nm were deposited in the inner regions of the vessel wall, 514-nm nanoparticles accumulated primarily at the luminal surface of the aorta. The observations confirm that size plays a critical role in the distribution of particles in the arterial vessel wall. It is additionally influenced by the formation of pressure-induced infusion channels, as well as by the existence of anatomic barriers, such as plaques, at the luminal surface of the aorta or the connective elastic tissue.


Assuntos
Artérias/ultraestrutura , Vasos Sanguíneos/ultraestrutura , Cateterismo/efeitos adversos , Animais , Artérias/metabolismo , Vasos Sanguíneos/metabolismo , Reestenose Coronária/patologia , Masculino , Microscopia Confocal , Microscopia Eletrônica , Nanotecnologia , Tamanho da Partícula , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...