Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Chemosphere ; : 142879, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033861

RESUMO

Recent regulatory actions aim to limit per- and polyfluoroalkyl substances (PFAS) concentrations in drinking water and wastewaters. Regenerable anion exchange resin (AER) is an effective separation process to remove PFAS from water but will require PFAS post-treatment of the regeneration wastestream. Electrocatalytic (EC) processes using chemically boron-doped diamond electrodes, stable in a wide range of chemical compositions show potential to defluorinate PFOA in drinking water and wastewater treatments. Chemical composition and concentration of mineral salts in supporting electrolytes affect AER regeneration efficiency, and play a crucial role in the EC processes. Their impact on PFAS degradation remains understudied. This study investigates the impact of 17 brine electrolytes with different compositions on perfluorooctanoic acid (PFOA) degradation in an alkaline medium and explores the correlation between the rate of PFOA degradation and the solution's conductivity. Results show that higher electrolyte concentrations and conductivity lead to faster PFOA degradation rates. The presence of chloride anions have negligible impact on the degradation rate. However, the presence of nitrate salts reduce PFOA degradation efficiency. Additionally, the use of mixed electrolytes may be a promising approach for reducing the cost of EC operations. PFOA degradation was not influenced by the pH of the bulk solution.

2.
Environ Sci Technol ; 58(25): 11162-11174, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38857410

RESUMO

Thermal treatment has emerged as a promising approach for either the end-of-life treatment or regeneration of granular activated carbon (GAC) contaminated with per- and polyfluoroalkyl substances (PFAS). However, its effectiveness has been limited by the requirement for high temperatures, the generation of products of incomplete destruction, and the necessity to scrub HF in the flue gas. This study investigates the use of common alkali and alkaline-earth metal additives to enhance the mineralization of perfluorooctanesulfonate (PFOS) adsorbed onto GAC. When treated at 800 °C without an additive, only 49% of PFOS was mineralized to HF. All additives tested demonstrated improved mineralization, and Ca(OH)2 had the best performance, achieving a mineralization efficiency of 98% in air or N2. Its ability to increase the reaction rate and shift the byproduct selectivity suggests that its role may be catalytic. Moreover, additives reduced HF in the flue gas by instead reacting with the additive to form inorganic fluorine (e.g., CaF2) in the starting waste material. A hypothesized reaction mechanism is proposed that involves the electron transfer from O2- defect sites of CaO to intermediates formed during the thermal decomposition of PFOS. These findings advocate for the use of additives in the thermal treatment of GAC for disposal or reuse, with the potential to reduce operating costs and mitigate the environmental impact associated with incinerating PFAS-laden wastes.


Assuntos
Ácidos Alcanossulfônicos , Carvão Vegetal , Fluorocarbonos , Carvão Vegetal/química , Ácidos Alcanossulfônicos/química , Fluorocarbonos/química , Metais Alcalinoterrosos/química , Adsorção , Álcalis/química , Temperatura Alta
3.
Environ Sci Technol Lett ; 11(6): 493-502, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882202

RESUMO

Uneven global distribution of phosphate rock deposits and the supply chains to transport phosphorus (P) make P fertilizers vulnerable to exogenous shocks, including commodity market shocks; extreme weather events or natural disasters; and geopolitical instability, such as trade disputes, disruption of shipping routes, and war. Understanding bidirectional risk transmission (global-to-local and local-to-global) in P supply and consumption chains is thus essential. Ignoring P system interdependencies and associated risks could have major impacts on critical infrastructure operations and increase the vulnerability of global food systems. We highlight recent unanticipated events and cascading effects that have impacted P markets globally. We discuss the need to account for exogenous shocks in local assessments of P flows, policies, and infrastructure design choices. We also provide examples of how accounting for undervalued global risks to the P industry can hasten the transition to a sustainable P future. For example, leveraging internal P recycling loops, improving plant P use efficiency, and utilizing legacy soil P all enhance system resiliency in the face of exogenous shocks and long-term anticipated threats. Strategies applied at the local level, which are embedded within national and global policy systems, can have global-scale impacts in derisking the P supply chain.

4.
Sci Total Environ ; 943: 173711, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38857799

RESUMO

Nitrate contamination of surface and ground water is a significant global challenge. Most current treatment technologies separate nitrate from water, resulting in concentrated wastestreams that need to be managed. Membrane Catalyst-film Reactors (MCfR), which utilize in-situ produced nanocatalysts attached to hydrogen-gas-permeable hollow-fiber membranes, offer a promising alternative for denitrification without generating a concentrated wastestream. In hydrogen-based MCfRs, bimetallic nano-scale catalysts reduce nitrate to nitrite and then further to di-nitrogen or ammonium. This study first investigated how different molar ratios of indium-to-palladium (In:Pd) catalytic films influenced denitrification rates in batch-mode MCfRs. We evaluated eleven In-Pd bimetallic catalyst films, with In:Pd molar ratios from 0.0029 to 0.28. Nitrate-removal exhibited a volcano-shaped dependence on In content, with the highest nitrate removal (0.19 mgNO3--N-min-1 L-1) occurring at 0.045 mol In/mol Pd. Using MCfRs with the optimal In:Pd loading, we treated nitrate-spiked tap water in continuous-flow for >60 days. Nitrate removal and reduction occurred in three stages: substantial denitrification in the first stage, a decline in denitrification efficiency in the second stage, and stabilized denitrification in the third stage. Factors contributing to the slowdown of denitrification were: loss of Pd and In catalysts from the membrane surface and elevated pH due to hydroxide ion production. Sustained nitrate removal will require that these factors be mitigated.

5.
Environ Sci Technol ; 58(26): 11213-11235, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885125

RESUMO

Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.


Assuntos
Reatores Biológicos , Membranas Artificiais , Oxirredução , Incrustação Biológica , Purificação da Água/métodos , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos
6.
Water Res ; 260: 121880, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38870861

RESUMO

In-situ hydrogen peroxide (H2O2) finds applications in disinfection and oxidation processes. Photoproduction of H2O2 from water and oxygen, avoids reliance upon organic chemicals, and potentially enables smaller-sized or lower-cost reactors than electrochemical methods. In ultrapure water, we previously demonstrated a novel dual-fiber system coupling a light emitting diode (LED) with a metal-organic framework (MOF) catalyst-coated optical fiber (POF-MIL-101(Fe)) and O2-based hollow-membrane fibers and achieved a remarkable H2O2 yield, 308 ± 1.4 mM h-1 catalyst-g-1. To enable H2O2 production anywhere we sought to understand the impacts of common water quality parameters. The production of H2O2 was not affected by added sodium, potassium, hydroxide, sulfate or nitrate ions. There was consistent performance over a wide pH range (4-10), maintaining a high production rate of 232 ± 3.5 mM h-1 catalyst-g-1 even at pH 10, a condition typically unfavorable for H2O2 photoproduction. Chloride ions produced hypochlorous acid, consuming in-situ produced H2O2. Phosphate adsorption on the iron-based MOF catalysts blocked H2O2 production. Inorganic carbon species inhibited H2O2 production due to in-situ formic acid. Encouraging results were obtained using atmospheric water (i.e., condensate), with rates reaching 288 ± 6.1 mM h-1 catalyst-g-1, comparable to ultrapure water. This underscores atmospheric water as a variable alternative, available in nearly all building air conditioning systems or could overcome geographical constraints, particularly in regions where obtaining pure water resources is challenging, offering a cost-effective solution. The dual-fiber reactor using atmospheric water enables high-efficiency H2O2 production anytime and anywhere.

7.
Water Res ; 257: 121682, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718654

RESUMO

Photocatalyst-coated optical fibers (P-OFs) using UV-A LEDs offer a highly promising solution for the degradation of micropollutants within municipal, reuse, industrial or home distribution systems, by integrating P-OFs into water storage tanks. P-OFs have photocatalysts attached to bundles of optical fibers, enabling their direct deployment within tanks. This eliminates the necessity for photocatalyst slurries, which would require additional membrane or separation systems. However, a current limitation of P-OFs is light management, specifically light oversaturation of the coated photocatalysts and short light transmission distances along fibers. This study overcomes this limitation and reveals strategies to improve the light dissipation uniformity along P-OFs, and demonstrates the performance of P-OFs on degrading a model micropollutant, carbamazepine (CBZ). Key tunable variables of fibers and light emission conditions, including photocatalyst coating patchiness (p), minimum light incident angles (θm), radiant flux launched to fibers (Φi), and fiber diameters (D), were modeled to establish their relationships with the light dissipation uniformity in TiO2-coated quartz optical fibers (TiO2-QOFs). We then validated modeling insights by conducting experiments to examine how these variables influence the generation of evanescent waves which are localized energy on fiber surfaces, leading to either photocatalyst activation or the recapture of unused light back into fibers. We observed substantial enhancements in evanescent waves generation by decreasing p and increasing θm, resulting in uniform light dissipation which reduces light oversaturation and improves light transmission distances. Moreover, these optimizations led to a remarkable three-fold improvement in CBZ degradation rates and a 65% reduction in energy consumption. Such improvement substantially reduces the capital and operational cost and enhances practicality of energy-efficient photocatalysis without additional chemical oxidants for micropollutant degradation in water storage tanks.


Assuntos
Fibras Ópticas , Quartzo , Titânio , Poluentes Químicos da Água , Titânio/química , Quartzo/química , Poluentes Químicos da Água/química , Catálise , Purificação da Água/métodos , Carbamazepina/química
8.
RSC Adv ; 14(22): 15627-15636, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38746838

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are pervasive in industrial processes, eliciting public concern upon their release into municipal sewers or the environment. Removing PFAS from the environment has become an urgent need. However, because potential endpoints span from energy-intensive complete mineralization to partial PFAS transformation, understanding and developing metrics for evaluating PFAS treatment can be a challenge. The goal of this study was to evaluate and compare the effectiveness of electrocatalytic degradation of PFAS with boron-doped diamond (BDD) electrodes using four techniques: LC-MS/MS target analysis, fluoride ion (F-), adsorbable organofluorine (AOF), and bioaccumulation potential using lipid-bilayer partition (LBP) tests. After 3 hours of electrocatalysis, >99% perfluorooctanoic acid (PFOA) degradation was achieved and corresponded with 84% conversion to F-, which was substantial - though intentionally not complete - defluorination. For the same 3 hour treatment time, AOF and LBP coefficient were reduced by 95% and 83%, respectively. LBP's detection limit was 2 orders of magnitude higher than that of AOF, so the positive correlation observed between LBP and AOF (r = 0.86) suggests AOF's practical utility as a design metric for assessing bioaccumulation potential of various organofluorine transformation by-products.

9.
Nat Commun ; 15(1): 2617, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521862

RESUMO

Recent advancements in membrane-assisted seawater electrolysis powered by renewable energy offer a sustainable path to green hydrogen production. However, its large-scale implementation faces challenges due to slow power-to-hydrogen (P2H) conversion rates. Here we report a modular forward osmosis-water splitting (FOWS) system that integrates a thin-film composite FO membrane for water extraction with alkaline water electrolysis (AWE), denoted as FOWSAWE. This system generates high-purity hydrogen directly from wastewater at a rate of 448 Nm3 day-1 m-2 of membrane area, over 14 times faster than the state-of-the-art practice, with specific energy consumption as low as 3.96 kWh Nm-3. The rapid hydrogen production rate results from the utilisation of 1 M potassium hydroxide as a draw solution to extract water from wastewater, and as the electrolyte of AWE to split water and produce hydrogen. The current system enables this through the use of a potassium hydroxide-tolerant and hydrophilic FO membrane. The established water-hydrogen balance model can be applied to design modular FO and AWE units to meet demands at various scales, from households to cities, and from different water sources. The FOWSAWE system is a sustainable and an economical approach for producing hydrogen at a record-high rate directly from wastewater, marking a significant leap in P2H practice.

10.
Environ Sci Technol ; 58(1): 3-16, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193155

RESUMO

Water reuse is rapidly becoming an integral feature of resilient water systems, where municipal wastewater undergoes advanced treatment, typically involving a sequence of ultrafiltration (UF), reverse osmosis (RO), and an advanced oxidation process (AOP). When RO is used, a concentrated waste stream is produced that is elevated in not only total dissolved solids but also metals, nutrients, and micropollutants that have passed through conventional wastewater treatment. Management of this RO concentrate─dubbed municipal wastewater reuse concentrate (MWRC)─will be critical to address, especially as water reuse practices become more widespread. Building on existing brine management practices, this review explores MWRC management options by identifying infrastructural needs and opportunities for multi-beneficial disposal. To safeguard environmental systems from the potential hazards of MWRC, disposal, monitoring, and regulatory techniques are discussed to promote the safety and affordability of implementing MWRC management. Furthermore, opportunities for resource recovery and valorization are differentiated, while economic techniques to revamp cost-benefit analysis for MWRC management are examined. The goal of this critical review is to create a common foundation for researchers, practitioners, and regulators by providing an interdisciplinary set of tools and frameworks to address the impending challenges and emerging opportunities of MWRC management.


Assuntos
Ultrafiltração , Águas Residuárias , Epicloroidrina , Nutrientes , Água
11.
Sci Total Environ ; 912: 168686, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38000751

RESUMO

A key requirement for evaluating the safety of nano-enabled water treatment devices is measuring concentrations of insoluble nanomaterials released from devices into water that may be ingested by consumers. Therefore, there is a need for simple technique that uses commonly available commercial laboratory techniques to discriminate between nanoparticles and dissolved by-products of the nanomaterial (e.g., ionic metals). Such capabilities would enable screening for particulate or dissolved metals released into water from nanomaterial-containing drinking water contact materials (e.g., paint coatings) or devices (e.g., filters). This multi-laboratory study sought to investigate the use of relatively inexpensive centrifugal ultrafilters to separate nanoparticulate from ionic metal in combination with inductively-coupled plasma mass spectrometry (ICP-MS) detection. The accuracy, precision, and reproducibility for the proposed method were assessed using mixtures of nanoparticulate and ionic gold (Au) in a standard and widely utilized model water matrix (NSF International Standard 53/61). Concentrations for both ionic and nanoparticulate gold based upon measurements of Au mass in the initial solutions and Au permeating the centrifugal ultrafilters. Results across different solution compositions and different participating labs showed that ionic and nanoparticulate Au could be consistently discriminated with ppb concentrations typically resulting in <10 % error. A mass balance was not achieved because nanoparticles were retained on membranes embedded in plastic holders inside the centrifuge tubes, and the entire apparatus could not be acid and/or microwave digested. This was a minor limitation considering the ultrafiltration method is a screening tool, and gold concentration in the permeate indicates the presence of ionic metal rather than nanoforms. With further development, this approach could prove to be an effective tool in screening for nanomaterial release from water-system or device materials as part of third-party certification processes of drinking water compatible products.


Assuntos
Água Potável , Nanopartículas Metálicas , Espectrometria de Massas/métodos , Água Potável/análise , Ultrafiltração , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Ouro/química
12.
Chemosphere ; 349: 140865, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048829

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a group of fluorinated organic contaminants classified as persistent in the aquatic environment. Early studies using targeted analysis approaches to evaluate the degradation of PFAS by advanced oxidation processes (AOP) in real water matrices may have been misinterpreted due to the presence of undetected or unknown PFAS in these matrices. The aims of the present study were to (1) screen selected commercially available AOPs (UV, UV + H2O2, O3/H2O2) and UV photocatalysis in a pilot system using commercially used and novel photocatalysts (TiO2, boron nitride [BN]) for removing PFAS contaminants and (2) evaluate their role on the conversion of non-detected/unknown to known PFAS compounds in real groundwater used as drinking water supplies. Results indicated that, while AOPs have the potential to achieve removal of the EPA method 533 target PFAS compounds (PFDA [100%], PFNA [100%], PFOA [85-94%], PFOS [25-100%], PFHxS [3-100%], PFPeS [100%], PFBS [100%]), AOPs transformed non-detected/unknown longer-chain PFAS compounds to detectable shorter-chain ones under very high-dose AOP operating conditions, leading to an increase in ∑PFAS concentration ranging from 95% to 340%. As emerging PFAS treatment processes transition from lab-scale investigations of target PFAS to pilot testing of real water matrices, studies will need to consider impact of the presence of non-target long-chain PFAS to transform into targeted PFAS compounds. A promising approach to address the potential risks and unforeseen consequences could involve an increased reliance on adsorbable organic fluorine (AOF) analysis before and after advanced oxidation process (AOP) treatment.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Peróxido de Hidrogênio/análise , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Oxirredução , Ácidos Alcanossulfônicos/análise
13.
Water Res ; 250: 121009, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38118256

RESUMO

While electrodialysis (ED) demonstrates lower energy consumption than reverse osmosis (RO) in the desalination of low salinity waters, RO continues to be the predominant technology for brackish water desalination. In this study, we probe this skewed market share and project the potential for future disruption by ED through systematic assessment of the levelized cost of water (LCOW). Using rigorous process- and economic-models, we minimize the LCOW of RO and ED systems, highlighting important tradeoffs between capital and operating expenditure for each technology. With optimized current state-of-the-art systems, we find that ED is more economical than RO for feed salinities ≤ 3 g L-1, albeit to a minor extent. Considering that RO is a highly mature technology, we focus on predicting the future potential of ED by evaluating plausible avenues for capital and operating cost reduction. Specifically, we find that reduction in the price of ion-exchange membranes (i.e., < 60 USD m-2) can ensure competitiveness with RO for feed salinities up to 5 g L-1. For higher feed salinities (≥ 5 g L-1) we reveal that the LCOW of ED may effectively be reduced by decreasing ion-exchange membrane resistance, while preserving high current efficiency. Through extensive assessment of structure-property-performance relationships, we precisely identify target membrane charge densities and diffusion coefficients which optimize the LCOW of ED, thus providing novel guidance for future membrane material development. Overall, we emphasize that with a unified approach - whereby ion-exchange membrane price is reduced and performance is enhanced - ED can become the economically preferable technology compared to RO across the entire brackish water salinity range.


Assuntos
Purificação da Água , Análise Custo-Benefício , Osmose , Águas Salinas , Água , Membranas Artificiais
14.
Environ Sci Technol ; 57(48): 20410-20420, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37948748

RESUMO

Carbon block filters, commonly employed as point-of-use (POU) water treatment components, effectively eliminate pathogens and adsorb undesirable tastes, odors, and organic contaminants, all while producing no water waste. However, they lack the capability to remove arsenic. Enabling the carbon block to remove arsenic could reduce its exposure risks in tap water. Inspired by Sous vide cooking techniques, we developed a low-energy, low-chemical method for impregnating commercially available carbon block with titanium (hydr)oxide (THO) in four integrated steps: (1) vacuum removal of air from the carbon block, (2) impregnation with precursors in a flexible pouch, (3) sealing to prevent oxygen intrusion, and (4) heating in a water bath at 80 °C for 20 h to eliminate exposure and reactions with air. This process achieved a uniform 13 wt % Ti loading in the carbon block. Our modified carbon block POU filter efficiently removed both arsenate and arsenite from tap water matrices containing 10 or 100 µg/L arsenic concentrations in batch experiments or continuous flow operations. Surprisingly, the THO-modified carbon block removed arsenite better than arsenate. This innovative method, using 70% fewer chemicals than traditional autoclave techniques, offers a cost-effective solution to reduce exposure to arsenic and lower its overall risk in tap water.


Assuntos
Arsênio , Arsenitos , Poluentes Químicos da Água , Purificação da Água , Carbono , Arseniatos , Titânio , Óxidos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção
15.
Environ Sci Technol ; 57(41): 15736-15746, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37802050

RESUMO

Biofilms give rise to a range of issues, spanning from harboring pathogens to accelerating microbial-induced corrosion in pressurized water systems. Introducing germicidal UV-C (200-280 nm) irradiation from light-emitting diodes (LEDs) into flexible side-emitting optical fibers (SEOFs) presents a novel light delivery method to inhibit the accumulation of biofilms on surfaces found in small-diameter tubing or other intricate geometries. This work used surfaces fully submerged in flowing water that contained Pseudomonas aeruginosa, an opportunistic pathogen commonly found in water system biofilms. A SEOF delivered a UV-C gradient to the surface for biofilm inhibition. Biofilm growth over time was monitored in situ using optical conference tomography. Biofilm formation was effectively inhibited when the 275 nm UV-C irradiance was ≥8 µW/cm2. Biofilm samples were collected from several regions on the surface, representing low and high UV-C irradiance. RNA sequencing of these samples revealed that high UV-C irradiance inhibited the expression of functional genes related to energy metabolism, DNA repair, quorum sensing, polysaccharide production, and mobility. However, insufficient sublethal UV-C exposure led to upregulation genes for SOS response and quorum sensing as survival strategies against the UV-C stress. These results underscore the need to maintain minimum UV-C exposure on surfaces to effectively inhibit biofilm formation in water systems.


Assuntos
Incrustação Biológica , Pseudomonas aeruginosa/fisiologia , Fibras Ópticas , Desinfecção/métodos , Biofilmes/efeitos da radiação , Água , Percepção de Quorum
16.
Sci Total Environ ; 905: 166971, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37699477

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals that occur ubiquitously in the environment and have been linked to numerous adverse health effects in humans and aquatic organisms. Although numerous environmental monitoring studies have been conducted, only one has evaluated PFAS in surface waters of the northwestern Great Basin, which features unique topography that results in dozens of endorheic basins and terminal lakes with no natural outlet, where PFAS may accumulate. To close this knowledge gap, we evaluated the occurrence of PFAS in grab samples from 15 lakes (headwater and terminal lakes) and 10 rivers in the Great Basin located in Nevada and California of the United States. PFAS and organofluorine were quantified by liquid chromatography tandem mass spectroscopy (LC-MS/MS) and combustion ion chromatography, respectively. The highest concentrations of PFAS occurred in samples taken near sites with known or suspected prior aqueous film forming foam (AFFF) application (~20 to 4754 ng/L). Samples near wastewater treatment plants and in urban areas also tended to have PFAS concentrations greater than those measured in remote, less anthropogenically influenced areas (~2 to 15 ng/L, <3 ng/L respectively). In limited snapshot sampling events PFAS appeared to accumulate in terminal lakes to some extent; in-lake concentrations were two to five times greater than those of their inflows. Fluorotelomer sulfonates were present downstream of a known AFFF application area likely to have had fluorotelomer-based foams applied to it, and the concentrations decayed in a predictable manner, suggesting they may be used as an indicator of PFAS transport away from an AFFF source. In all but two samples, organofluorine concentrations were greater than the sum of targeted PFAS (on a F basis) (median of 0.6 % of organofluorine identified via LC-MS/MS), although there was considerable variability in organofluorine measured in replicate samples.

18.
ACS ES T Eng ; 3(7): 989-1000, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37546364

RESUMO

Millions of households still rely on drinking water from private wells or municipal systems with arsenic levels approaching or exceeding regulatory limits. Arsenic is a potent carcinogen, and there is no safe level of it in drinking water. Point-of-use (POU) treatment systems are a promising option to mitigate arsenic exposure. However, the most commonly used POU technology, an activated carbon block filter, is ineffective at removing arsenic. Our study aimed to explore the potential of impregnating carbon blocks with amorphous titanium (hydr)oxide (THO) to improve arsenic removal without introducing titanium (Ti) into the treated water. Four synthesis methods achieved 8-16 wt.% Ti loading within the carbon block with 58-97% amorphous THO content. The THO-modified carbon block could adsorb both oxidation states of arsenic (arsenate and arsenite) in batch or column tests. Modified carbon block with higher Ti and amorphous content always led to better arsenate removal, achieving arsenic loadings up to 31 mg As/mg Ti after 70,000 bed volumes in continuous flow tests. Impregnating carbon block with amorphous THO consistently outperformed impregnation using crystalline TiO2. The best-performing system (TTIP-EtOH carbon block) was an amorphous THO derived using titanium isopropoxide, ethanol, and acetic acid via sol-gel technique, aged at 80° for 18 hours and dried overnight at 60°. Comparable pore size distribution and surface area of the impregnated carbon blocks suggested that chemical properties play a more crucial role than physical and textural properties in removing arsenate via amorphous Ti-impregnated carbon block. Freundlich isotherms indicated energetically favorable adsorption for amorphous chemically synthesized adsorbents. The mass transport coefficients for the amorphous TTIP-EtOH carbon block were fitted using a pore surface diffusion model, resulting in Dsurface = 3.1×10-12 cm2/s and Dpore = 3.2×10-6 cm2/s. Impregnating the carbon block with THO enabled effective arsenic removal from water without adversely affecting the pressure drop across the unit or the carbon block's ability to remove polar organic chemical pollutants efficiently.

19.
Chemosphere ; 338: 139582, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478997

RESUMO

The efficiency of an electrochemical oxidation/reduction process strongly depends on the working electrode's surface area to volume ratio. By making electrodes flexible and employing different configurations such as roll-to-roll membrane, the surface area to volume ratio can be enhanced, therefore improving the overall efficiency of electrochemical processes. Conductive polymers emerge as a new framework to enable alternative electrochemical water treatment cell configurations. Self-standing polypyrrole flexible electrodes were synthesized by electropolymerization and evaluated on the treatment of an oxyanion pollutant: nitrite. Mechanical characterization through stress-strain curves and bending tests demonstrated high electrode resilience that sustained over 1000 bending cycles without impacting mechanical integrity or electrocatalytic responses. The electrocatalytic response towards nitrite reduction was assessed under linear scan voltammetry (LSV) and removal performance evaluated under potentiostatic conditions reaching 79% abatement of initial concentrations of nitrite of 15 mg/L [NO2--N]. Self-standing flexible electrodes appear as a novel framework to enable modular compact water treatment unit designs that maximize the electrode area/volume ratio and substitute expensive platinum group metal (PGMs) electrocatalysts.


Assuntos
Nitritos , Polímeros , Polímeros/química , Nitritos/química , Pirróis/química , Eletrodos
20.
Environ Sci Technol ; 57(29): 10849-10859, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428984

RESUMO

Photolysis of free chlorine is an increasingly recognized approach for effectively inactivating microorganisms and eliminating trace organic contaminants. However, the impact of dissolved organic matter (DOM), which is ubiquitous in engineered water systems, on free chlorine photolysis is not yet well understood. In this study, triplet state DOM (3DOM*) was found to cause the decay of free chlorine for the first time. By using laser flash photolysis, the scavenging rate constants of triplet state model photosensitizers by free chlorine at pH 7.0 were determined to be in the range of (0.26-3.33) × 109 M-1 s-1. 3DOM*, acting as a reductant, reacted with free chlorine at an estimated reaction rate constant of 1.22(±0.22) × 109 M-1 s-1 at pH 7.0. This study revealed an overlooked pathway of free chlorine decay during UV irradiation in the presence of DOM. Besides the DOM's light screening ability and scavenging of radicals or free chlorine, 3DOM* played an important role in the decay of free chlorine. This reaction pathway accounted for a significant proportion of the decay of free chlorine, ranging from 23 to 45%, even when DOM concentrations were below 3 mgC L-1 and a free chlorine dose of 70 µM was present during UV irradiation at 254 nm. The generation of HO• and Cl• from the oxidation of 3DOM* by free chlorine was confirmed by electron paramagnetic resonance and quantified by chemical probes. By inputting the newly observed pathway in the kinetics model, the decay of free chlorine in UV254-irradiated DOM solution can be well predicted.


Assuntos
Cloro , Poluentes Químicos da Água , Matéria Orgânica Dissolvida , Raios Ultravioleta , Oxirredução , Poluentes Químicos da Água/análise , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...