Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cancer Res ; 81(5): 1189-1200, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262127

RESUMO

In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.


Assuntos
Imagem Multimodal/métodos , Neoplasias Experimentais/diagnóstico por imagem , Animais , Biomarcadores Tumorais/análise , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Experimentais/patologia , Técnicas Fotoacústicas , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X/métodos
2.
Med Phys ; 47(3): 1280-1290, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31828781

RESUMO

PURPOSE: Three-dimensional in-vivo dose verification is one of the standing challenges in radiation therapy. X-ray-induced acoustic tomography has recently been proposed as an imaging method for use in in-vivo dosimetry. The aim of this study was to investigate the accuracy of reconstructing three-dimensional (3D) absolute dose using x-ray-induced acoustic tomography. We performed this investigation using two different tomographic dose reconstruction techniques. METHODS: Two examples of 3D dose reconstruction techniques for x-ray acoustic imaging are investigated. Dose distributions are calculated for varying field sizes using a clinical treatment planning system. The induced acoustic pressure waves which are generated by the increase in temperature due to the absorption of pulsed MV x-rays are simulated using an advanced numerical modeling package for acoustic wave propagation in the time domain. Two imaging techniques, back projection and iterative time reversal, are used to reconstruct the 3D dose distribution in a water phantom with open fields. Image analysis is performed and reconstructed depth dose curves from x-ray acoustic imaging are compared to the depth dose curves calculated from the treatment planning system. Calculated field sizes from the reconstructed dose profiles by back projection and time reversal are compared to the planned field size to determine their accuracy. The iterative time reversal imaging technique is also used to reconstruct dose in an example clinical dose distribution. Image analysis of this clinical test case is performed using the gamma passing rate. In addition, gamma passing rates are used to validate the stopping criteria in the iterative time reversal method. RESULTS: Water phantom simulations showed that back projection does not adequately reconstruct the shape and intensity of the depth dose. When compared to the depth of maximum dose calculated by a treatment planning system, the maximum dose depth by back projection is shifted deeper by 55 and 75 mm for 4 × 4 cm and 10 × 10 cm field sizes, respectively. The reconstructed depth dose by iterative time reversal accurately agrees with the planned depth dose for a 4 × 4 cm field size and is shifted deeper by 12 mm for the 10 × 10 cm field size. When reconstructing field sizes, the back projection method leads to 18% and 35% larger sizes for the 4 × 4 cm and 10 × 10 cm fields, respectively, whereas the iterative time reversal method reconstructs both field sizes with < 2% error. For the clinical dose distribution, we were able to reconstruct the dose delivered by a 1 degree sub-arc with a good accuracy. The reconstructed and planned doses were compared using gamma analysis, with> 96% gamma passing rate at 3%/2 mm. CONCLUSIONS: Our results show that the 3D x-ray acoustic reconstructed dose by iterative time reversal is considerably more accurate than the dose reconstructed by back projection. Iterative time reversal imaging has a potential for use in 3D absolute dosimetry.


Assuntos
Acústica/instrumentação , Simulação por Computador , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Fatores de Tempo
3.
Med Phys ; 46(12): 5714-5721, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31622500

RESUMO

PURPOSE: The pulse line ion accelerator (PLIA) is a low-cost accelerator concept originally designed to accelerate heavy ions. Our group has been investigating the use of PLIA to accelerate light ions and believe a multi-stage PLIA could be useful for short half-life PET isotope production. The goal of this work was to develop a single prototype fast PLIA structure and demonstrate electromagnetic wave propagation using a high-voltage pulser. MATERIALS AND METHODS: A 1.6 m fast PLIA structure (wave speed > 107  m/s) was constructed along with a high-voltage, sinusoidal pulse generator. The latter uses capacitive voltage doubling and spark gap switching. A step-up transformer couples voltage from the pulser to the PLIA coil. Voltage measurements on the coil were made in air using a high-voltage resistive probe, while capacitive probes placed along the length of the PLIA were used to measure wave propagation with the PLIA structure filled with transformer oil. RESULTS: Voltage measurements acquired on the primary and secondary coils of the transformer coupler in air demonstrated a peak-to-peak voltage step-up of 4.2 relative to the pulser DC charging voltage. The maximum voltage time-rate-of-change on the PLIA coil was 0.76 × 1013  V/s. Capacitive probe measurements indicated voltage oscillations on the PLIA coil with half-period equal to 43 ± 0.9 ns and wave speed (with oil) of 1.2 × 107  m/s. Average and peak accelerating gradients were conservatively estimated to be 0.44 and 0.60 MV/m, respectively, with a charging voltage of 55 kV. Wave propagation was demonstrated at these gradients without flashover at a vacuum pressure of 9 × 10-6  Torr. Submerging the pulser in oil would allow for charging voltages up to 150 kV and produce accelerating gradients >1.2 MV/m. CONCLUSIONS: Use of a multi-stage, fast PLIA for light ion acceleration could provide a low-cost complement to cyclotrons for the production of short half-life isotopes used for PET imaging, including carbon-11, nitrogen-13, oxygen-15, and fluorine-18.


Assuntos
Fenômenos Eletromagnéticos , Aceleradores de Partículas , Tomografia por Emissão de Pósitrons/instrumentação
4.
Med Phys ; 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905959

RESUMO

PURPOSE: Positron emission tomography (PET) imaging remains limited due to the cost associated with on-site production of short half-life, positron-emitting isotopes. In this work, we examine the use of a pulse line ion accelerator (PLIA) to accelerate protons for single-dose PET isotope production. METHODS: Time-domain electromagnetic field and particle-in-cell (PIC) simulations were performed for a 1.5-m PLIA structure modeled in CST Microwave Studio and Particle Studio software. Scaled measurements from a kV ramp-pulse generator were incorporated into the simulations to accelerate a 1 A, 50 ns proton beam injected with initial kinetic energy of 100 keV. A uniform, 3 T, solenoidal magnetic field was used to provide external beam focusing. Electromagnetic fields and particle phase space were recorded with ns resolution for subsequent analysis. RESULTS: Applying a scaled 100 kV, 20 ns ramped voltage pulse to the PLIA input resulted in a travelling electric field wave inside the structure with accelerating gradient of 2.4 MV/m. The observed wave speed was 1.2 × 107 m/s and is in good agreement with theoretical predictions. Phase space monitors showed both acceleration and bunching of the proton beam, with a maximum kinetic energy of 2.5 MeV, observed at the exit of the single PLIA stage. Evaluation of beam position monitors at different locations in the accelerator showed bunch compression and minimal beam divergence, illustrating that the 3 T field is adequate to contain the beam over the length of the PLIA structure. CONCLUSION: Simulations performed in this work demonstrate the feasibility of using a PLIA structure to accelerate protons with MV/m level gradients. Combining several PLIA stages in series could allow for a low-cost accelerator suitable for dose-on-demand PET isotope production.

5.
Med Dosim ; 40(3): 256-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25824420

RESUMO

Targeted focal therapy strategies for treating single-lobe prostate cancer are under investigation. In this planning study, we investigate the feasibility of treating a portion of the prostate to full-dose external beam radiation with reduced dose to the opposite lobe, compared with full-dose radiation delivered to the entire gland using hypofractionated radiation. For 10 consecutive patients with low- to intermediate-risk prostate cancer, 2 hypofractionated, single-arc volumetric-modulated arc therapy (VMAT) plans were designed. The first plan (standard hypofractionation regimen [STD]) included the entire prostate gland, treated to 70 Gy delivered in 28 fractions. The second dose painting plan (DP) encompassed the involved lobe treated to 70 Gy delivered in 28 fractions, whereas the opposing, uninvolved lobe received 50.4 Gy in 28 fractions. Mean dose to the opposing neurovascular bundle (NVB) was considerably lower for DP vs STD, with a mean dose of 53.9 vs 72.3 Gy (p < 0.001). Mean penile bulb dose was 18.6 Gy for DP vs 19.2 Gy for STD (p = 0.880). Mean rectal dose was 21.0 Gy for DP vs 22.8 Gy for STD (p = 0.356). Rectum V70 (the volume receiving ≥70 Gy) was 2.01% for DP vs 2.74% for STD (p = 0.328). Bladder V70 was 1.69% for DP vs 2.78% for STD (p = 0.232). Planning target volume (PTV) maximum dose points were 76.5 and 76.3 Gy for DP and STD, respectively (p = 0.760). This study demonstrates the feasibility of using VMAT for partial-lobe prostate radiation in patients with prostate cancer involving 1 lobe. Partial-lobe prostate plans appeared to spare adjacent critical structures including the opposite NVB.


Assuntos
Tratamentos com Preservação do Órgão/métodos , Neoplasias da Próstata/radioterapia , Hipofracionamento da Dose de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos , Idoso , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade , Proteção Radiológica/métodos , Estudos Retrospectivos , Resultado do Tratamento
6.
Med Dosim ; 38(4): 401-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23809692

RESUMO

The goal of this work was to develop planning strategies for whole-breast radiotherapy (WBRT) using TomoDirect three-dimensional conformal radiation therapy (TD-3DCRT) and to compare TD-3DCRT with conventional 3DCRT and TD intensity-modulated radiation therapy (TD-IMRT) to evaluate differences in WBRT plan quality. Computed tomography (CT) images of 10 women were used to generate 150 WBRT plans, varying in target structures, field width (FW), pitch, and number of beams. Effects on target and external maximum doses (EMD), organ-at-risk (OAR) doses, and treatment time were assessed for each parameter to establish an optimal planning technique. Using this technique, TD-3DCRT plans were generated and compared with TD-IMRT and standard 3DCRT plans. FW 5.0cm with pitch = 0.250cm significantly decreased EMD without increasing lung V20Gy. Increasing number of beams from 2 to 6 and using an additional breast planning structure decreased EMD though increased lung V20Gy. Changes in pitch had minimal effect on plan metrics. TD-3DCRT plans were subsequently generated using FW 5.0cm, pitch = 0.250cm, and 2 beams, with additional beams or planning structures added to decrease EMD when necessary. TD-3DCRT and TD-IMRT significantly decreased target maximum dose compared to standard 3DCRT. FW 5.0cm with 2 to 6 beams or novel planning structures or both allow for TD-3DCRT WBRT plans with excellent target coverage and OAR doses. TD-3DCRT plans are comparable to plans generated using TD-IMRT and provide an alternative to conventional 3DCRT for WBRT.


Assuntos
Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador , Radioterapia Conformacional , Feminino , Humanos
7.
Med Phys ; 40(6): 061706, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23718585

RESUMO

PURPOSE: Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke ["Two-dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media," Phys. Med. Biol. 47, 3313-3330 (2002)] developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. METHODS: Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Molière scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. RESULTS: Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as much as 1.4 mm (21%) at the depth of the Bragg peak for a 220 MeV proton beam in homogeneous water. This translates into a 32% dose discrepancy for a 5 mm Gaussian proton beam. Similar trends were observed for calculations made in heterogeneous slab phantoms where it was also noted that errors tend to increase with greater beam penetration. The generalized 2D scaling model performs well in all situations, with a maximum dose error of 0.3% at the Bragg peak in a heterogeneous phantom containing 3 cm of hard bone. CONCLUSIONS: The authors have derived a generalized form of 2D pencil beam scaling which is independent of the proton scattering power model and robust to the functional form of the radial kernel width in water used for the calculations. Sample calculations made with this model show excellent agreement with expected values in both homogeneous water and heterogeneous phantoms.


Assuntos
Algoritmos , Terapia com Prótons , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Humanos , Dosagem Radioterapêutica
8.
Med Phys ; 39(8): 4812-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22894407

RESUMO

PURPOSE: Stereotactic body radiation therapy (SBRT) is a potent treatment for early stage primary and limited metastatic disease. Accurate tumor localization is essential to administer SBRT safely and effectively. Tomotherapy combines helical IMRT with onboard megavoltage CT (MVCT) imaging and is well suited for SBRT; however, MVCT results in reduced soft tissue contrast and increased image noise compared with kilovoltage CT. The goal of this work was to investigate the use of increased imaging doses on a clinical tomotherapy machine to improve image quality for SBRT image guidance. METHODS: Two nonstandard, high-dose imaging modes were created on a tomotherapy machine by increasing the linear accelerator (LINAC) pulse rate from the nominal setting of 80 Hz, to 160 Hz and 300 Hz, respectively. Weighted CT dose indexes (wCTDIs) were measured for the standard, medium, and high-dose modes in a 30 cm solid water phantom using a calibrated A1SL ion chamber. Image quality was assessed from scans of a customized image quality phantom. Metrics evaluated include: contrast-to-noise ratios (CNRs), high-contrast spatial resolution, image uniformity, and percent image noise. In addition, two patients receiving SBRT were localized using high-dose MVCT scans. Raw detector data collected after each scan were used to reconstruct standard-dose images for comparison. RESULTS: MVCT scans acquired using a pitch of 1.0 resulted in wCTDI values of 2.2, 4.7, and 8.5 cGy for the standard, medium, and high-dose modes respectively. CNR values for both low and high-contrast materials were found to increase with the square root of dose. Axial high-contrast spatial resolution was comparable for all imaging modes at 0.5 lp∕mm. Image uniformity was improved and percent noise decreased as the imaging dose increased. Similar improvements in image quality were observed in patient images, with decreases in image noise being the most notable. CONCLUSIONS: High-dose imaging modes are made possible on a clinical tomotherapy machine by increasing the LINAC pulse rate. Increasing the imaging dose results in increased CNRs; making it easier to distinguish the boundaries of low contrast objects. The imaging dose levels observed in this work are considered acceptable at our institution for SBRT treatments delivered in 3-5 fractions.


Assuntos
Neoplasias/radioterapia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Fígado/patologia , Metástase Neoplásica , Aceleradores de Partículas , Controle de Qualidade , Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X/métodos
9.
Int J Radiat Oncol Biol Phys ; 84(3): e441-6, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22682809

RESUMO

PURPOSE: To evaluate the temporal dose response of normal liver tissue for patients with liver metastases treated with stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS: Ninety-nine noncontrast follow-up computed tomography (CT) scans of 34 patients who received SBRT between 2004 and 2011 were retrospectively analyzed at a median of 8 months post-SBRT (range, 0.7-36 months). SBRT-induced normal liver tissue density changes in follow-up CT scans were evaluated at 2, 6, 10, 15, and 27 months. The dose distributions from planning CTs were mapped to follow-up CTs to relate the mean Hounsfield unit change (ΔHU) to dose received over the range 0-55 Gy in 3-5 fractions. An absolute density change of 7 HU was considered a significant radiographic change in normal liver tissue. RESULTS: Increasing radiation dose was linearly correlated with lower post-SBRT liver tissue density (slope, -0.65 ΔHU/5 Gy). The threshold for significant change (-7 ΔHU) was observed in the range of 30-35 Gy. This effect did not vary significantly over the time intervals evaluated. CONCLUSIONS: SBRT induces a dose-dependent and relatively time-independent hypodense radiation reaction within normal liver tissue that is characterized by a decrease of >7 HU in liver density for doses >30-35 Gy.


Assuntos
Neoplasias Hepáticas/cirurgia , Fígado/anatomia & histologia , Fígado/efeitos da radiação , Radiocirurgia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Relação Dose-Resposta à Radiação , Feminino , Humanos , Fígado/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Radioterapia Conformacional/métodos , Estudos Retrospectivos , Fatores de Tempo , Tomografia Computadorizada por Raios X
10.
Int J Radiat Oncol Biol Phys ; 83(5): e613-8, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22494588

RESUMO

PURPOSE: To characterize changes in standardized uptake value (SUV) in positron emission tomography (PET) scans and determine the pace of normal tissue regeneration after stereotactic body radiation therapy (SBRT) for solid tumor liver metastases. METHODS AND MATERIALS: We reviewed records of patients with liver metastases treated with SBRT to ≥40 Gy in 3-5 fractions. Evaluable patients had pretreatment PET and ≥1 post-treatment PET. Each PET/CT scan was fused to the planning computed tomography (CT) scan. The maximum SUV (SUV(max)) for each lesion and the total liver volume were measured on each PET/CT scan. Maximum SUV levels before and after SBRT were recorded. RESULTS: Twenty-seven patients with 35 treated liver lesions were studied. The median follow-up was 15.7 months (range, 1.5-38.4 mo), with 5 PET scans per patient (range, 2-14). Exponential decay curve fitting (r=0.97) showed that SUV(max) declined to a plateau of 3.1 for controlled lesions at 5 months after SBRT. The estimated SUV(max) decay half-time was 2.0 months. The SUV(max) in controlled lesions fluctuated up to 4.2 during follow-up and later declined; this level is close to 2 standard deviations above the mean normal liver SUV(max) (4.01). A failure cutoff of SUV(max) ≥6 is twice the calculated plateau SUV(max) of controlled lesions. Parenchymal liver volume decreased by 20% at 3-6 months and regenerated to a new baseline level approximately 10% below the pretreatment level at 12 months. CONCLUSIONS: Maximum SUV decreases over the first months after SBRT to plateau at 3.1, similar to the median SUV(max) of normal livers. Transient moderate increases in SUV(max) may be observed after SBRT. We propose a cutoff SUV(max) ≥6, twice the baseline normal liver SUV(max), to score local failure by PET criteria. Post-SBRT values between 4 and 6 would be suspicious for local tumor persistence or recurrence. The volume of normal liver reached nadir 3-6 months after SBRT and regenerated within the next 6 months.


Assuntos
Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Regeneração Hepática , Fígado/diagnóstico por imagem , Radiocirurgia , Adulto , Idoso , Feminino , Fluordesoxiglucose F18 , Humanos , Fígado/anatomia & histologia , Fígado/fisiologia , Fígado/efeitos da radiação , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Regeneração Hepática/fisiologia , Regeneração Hepática/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/métodos , Tamanho do Órgão , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
11.
Acta Oncol ; 50(6): 772-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21767173

RESUMO

BACKGROUND: Traditionally, radiation therapy plans are optimized without consideration of chemotherapy. Here, we model the risk of radiation pneumonitis (RP) in the presence of a possible interaction between chemotherapy and radiation dose distribution. MATERIAL AND METHODS: Three alternative treatment plans are compared in 18 non-small cell lung cancer patients previously treated with helical tomotherapy; the tomotherapy plan, an intensity modulated proton therapy plan (IMPT) and a three dimensional conformal radiotherapy (3D-CRT) plan. All plans are optimized without consideration of the chemotherapy effect. The effect of chemotherapy is modeled as an independent cell killing process using a uniform chemotherapy equivalent radiation dose (CERD) added to the entire organ at risk. We estimate the risk of grade 3 or higher RP (G3RP) using the critical volume model. RESULTS: The mean risk of clinical G3RP at zero CERD is 5% for tomotherapy (range: 1-18 %) and 14% for 3D-CRT (range 2-49%). When the CERD exceeds 9 Gy, however, the risk of RP with the tomotherapy plans become higher than the 3D-CRT plans. The IMPT plans are less toxic both at zero CERD (mean 2%, range 1-5%) and at CERD = 10 Gy (mean 7%, range 1-28%). Tomotherapy yields a lower risk of RP than 3D-CRT for 17/18 patients at zero CERD, but only for 7/18 patients at CERD = 10 Gy. IMPT gives the lowest risk of all plans for 17/18 patients at zero CERD and for all patients with CERD = 10 Gy. CONCLUSIONS: The low dose bath from highly conformal photon techniques may become relevant for lung toxicity when radiation is combined with cytotoxic chemotherapy as shown here. Proton therapy allows highly conformal delivery while minimizing the low dose bath potentially interacting with chemotherapy. Thus, intensive drug-radiation combinations could be an interesting indication for selecting patients for proton therapy. It is likely that the IMRT plans would perform better if the CERD was accounted for during optimization, but more clinical data is required to facilitate evidence-based plan optimization in the multi-modality setting.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia/efeitos adversos , Neoplasias Pulmonares/terapia , Fótons/efeitos adversos , Prótons/efeitos adversos , Pneumonite por Radiação/etiologia , Humanos , Método de Monte Carlo , Fatores de Risco , Resultado do Tratamento
12.
Int J Radiat Oncol Biol Phys ; 80(3): 893-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21477946

RESUMO

PURPOSE: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. METHODS AND MATERIALS: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeled as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. RESULTS: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. CONCLUSIONS: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Pneumonite por Radiação/etiologia , Radioterapia de Intensidade Modulada/efeitos adversos , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Humanos , Modelos Biológicos , Pneumonite por Radiação/induzido quimicamente , Dosagem Radioterapêutica , Radioterapia Conformacional/efeitos adversos
13.
Radiother Oncol ; 100(2): 241-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21316783

RESUMO

BACKGROUND AND PURPOSE: To compare left-sided whole breast conventional and intensity-modulated radiotherapy (IMRT) treatment planning techniques. MATERIALS AND METHODS: Treatment plans were created for 10 consecutive patients. Three-dimensional conformal radiotherapy (3DCRT), forward-planned IMRT (for-IMRT), and inverse-planned IMRT (inv-IMRT) used two tangent beams. For-IMRT utilized up to four segments per beam. For helical tomotherapy (HT) plans, beamlet entrance and/or exit to critical structures was blocked. Topotherapy plans, which used static gantry angles with simultaneous couch translation and inverse-planned intensity modulation, used two tangent beams. Plans were normalized to 50Gy to 95% of the retracted PTV. RESULTS: Target max doses were reduced with for-IMRT compared to 3DCRT, which were further reduced with HT, topotherapy, and inv-IMRT. HT resulted in lowest heart and ipsilateral lung max doses, but had higher mean doses. Inv-IMRT and topotherapy reduced ipsilateral lung mean and max doses compared to 3DCRT and for-IMRT. CONCLUSIONS: All modalities evaluated provide adequate coverage of the intact breast. HT, topotherapy, and inv-IMRT can reduce high doses to the target and normal tissues, although HT results in increased low doses to large volume of normal tissue. For-IMRT improves target homogeneity compared with 3DCRT, but to a lesser degree than the inverse-planned modalities.


Assuntos
Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Mama/efeitos da radiação , Feminino , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/instrumentação
14.
Med Dosim ; 36(1): 46-56, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20138501

RESUMO

The purpose of this study was to develop an efficient and effective planning technique for stereotactic radiosurgery using helical tomotherapy. Planning CTs and contours of 20 patients, previously treated in our clinic for brain metastases with linac-based radiosurgery using circular collimators, were used to develop a robust TomoTherapy planning technique. Plan calculation times as well as delivery times were recorded for all patients to allow for an efficiency evaluation. In addition, conformation and homogeneity indices were calculated as metrics to compare plan quality with that which is achieved with conventional radiosurgery delivery systems. A robust and efficient planning technique was identified to produce plans of radiosurgical quality using the TomoTherapy treatment planning system. Dose calculation did not exceed a few hours and resulting delivery times were less than 1 hour, which allows the process to fit into a single day radiosurgery workflow. Plan conformity compared favorably with published results for gamma knife radiosurgery. In addition, plan homogeneity was similar to linac-based approaches. The TomoTherapy planning software can be used to create plans of acceptable quality for stereotactic radiosurgery in a time that is appropriate for a radiosurgery workflow that requires that planning and delivery occur within 1 treatment day.


Assuntos
Algoritmos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Proteção Radiológica/métodos , Radiometria/métodos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Humanos , Modelos Biológicos , Dosagem Radioterapêutica
15.
Acta Oncol ; 49(7): 991-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20831487

RESUMO

Important limitations for dose painting are due to treatment planning and delivery constraints. The purpose of this study was to develop a methodology for creating voxel-based dose painting plans that are deliverable using the clinical TomoTherapy Hi-Art II treatment planning system (TPS). Material and methods. Uptake data from a head and neck patient who underwent a [(61)Cu]Cu-ATSM (hypoxia surrogate) PET/CT scan was retrospectively extracted for planning. Non-uniform voxel-based prescriptions were converted to structured-based prescriptions for compatibility with the Hi-Art II TPS. Optimized plans were generated by varying parameters such as dose level, structure importance, prescription point normalization, DVH volume, min/max dose, and dose penalty. Delivery parameters such as pitch, jaw width and modulation factor were also varied. Isodose distributions, quality volume histograms and planning target volume percentage receiving planned dose within 5% of the prescription (Q(0.95-1.05)) were used to evaluate plan conformity. Results. In general, the conformity of treatment plans to dose prescriptions was found to be adequate for delivery of dose painting plans. The conformity was better as the dose levels increased from three to nine levels (Q(0.95-1.05): 69% to 93%), jaw decreased in width from 5.0cm to 1.05cm (Q(0.95-1.05): 81% to 93%), and modulation factor increased up to 2.0 (Q(0.95-1.05): 36% to 92%). The conformity was invariant to changes in pitch. Plan conformity decreased as the prescription DVH constraint (Q(0.95-1.05): 93% vs. 89%) or the normalization point (Q(0.95-1.05): 93% vs. 90%) deviated from the means. Conclusion. This investigation demonstrated the ability of the Hi-Art II TPS to create voxel-based dose painting plans. Results indicated that agreement in prescription dose and planned dose distributions for all plans were sensitive to physical delivery parameter changes in jaw width and modulation factors, but insensitive to changes in pitch. Tight constraints on target structures also resulted in decreased plan conformity while under a relaxed set of optimization parameters, plan conformity was increased.


Assuntos
Carcinoma de Células Escamosas/radioterapia , Neoplasias de Cabeça e Pescoço/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Tomografia Computadorizada Espiral/métodos , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia , Complexos de Coordenação , Radioisótopos de Cobre , Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Compostos Organometálicos , Tomografia por Emissão de Pósitrons/métodos , Dosagem Radioterapêutica , Sensibilidade e Especificidade , Tiossemicarbazonas , Carga Tumoral/efeitos da radiação
16.
Acta Oncol ; 49(7): 1052-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20831495

RESUMO

PURPOSE: To study the interaction between radiation dose distribution and hypofractionated radiotherapy with respect to the risk of radiation pneumonitis (RP) estimated from normal tissue complication probability (NTCP) models. MATERIAL AND METHODS: Eighteen non-small cell lung cancer patients previously treated with helical tomotherapy were selected. For each patient a 3D-conformal plan (3D-CRT) plan was produced in addition to the delivered plan. The standard fractionation schedule was set to 60 Gy in 30 fractions. Iso-efficacy comparisons with hypofractionation were performed by changing the fractionation and the physical prescription dose while keeping the equivalent tumor dose in 2 Gy fractions constant. The risk of developing RP after radiotherapy was estimated using the Mean Equivalent Lung Dose in 2-Gy fractions (MELD(2)) NTCP model with α/ß=4 Gy for the residual lung. Overall treatment time was kept constant. RESULTS: The mean risk of clinical RP after standard fractionation was 7.6% for Tomotherapy (range: 2.8-15.9%) and 9.2% for 3D-CRT (range 3.2-20.2%). Changing to 20 fractions, the Tomotherapy plans became slightly less toxic if the tumor α/ß ratio, (α/ß)(T), was 7 Gy (mean RP risk 7.5%, range 2.8-16%) while the 3D-CRT plans became marginally more toxic (mean RP risk 9.8%, range 3.2-21%). If (α/ß)(T) was 13 Gy, the mean estimated risk of RP is 7.9% for Tomotherapy (range: 2.8-17%) and 10% for 3D-CRT (range 3.2-22%). CONCLUSION: Modern highly conformal dose distributions are radiobiologically more forgiving with respect to hypofractionation, even for a normal tissue endpoint where α/ß is lower than for the tumor in question.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fracionamento da Dose de Radiação , Neoplasias Pulmonares/radioterapia , Pneumonite por Radiação/etiologia , Radioterapia Conformacional/efeitos adversos , Radioterapia Conformacional/métodos , Calibragem , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Regulação para Baixo , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Doses de Radiação , Tolerância a Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia Conformacional/normas , Fatores de Risco , Mudança Social , Equivalência Terapêutica , Tomografia Computadorizada Espiral/métodos , Tomografia Computadorizada Espiral/normas
17.
Phys Med Biol ; 55(10): 2983-95, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20436233

RESUMO

The aim of the study was to demonstrate a potential alternative scenario for accurate dose-painting (non-homogeneous planned dose) delivery at 1 cm beam width with helical tomotherapy (HT) in the presence of 1 cm, three-dimensional, intra-fraction respiratory motion, but without any active motion management. A model dose-painting experiment was planned and delivered to the average position (proper phase of a 4DCT scan) with three spherical PTV levels to approximate dose painting to compensate for hypothetical hypoxia in a model lung tumor. Realistic but regular motion was produced with the Washington University 4D Motion Phantom. A small spherical Virtual Water phantom was used to simulate a moving lung tumor inside of the LUNGMAN anthropomorphic chest phantom to simulate realistic heterogeneity uncertainties. A piece of 4 cm Gafchromic EBT film was inserted into the 6 cm diameter sphere. TomoTherapy, Inc., DQA software was used to verify the delivery performed on a TomoTherapy Hi-Art II device. The dose uncertainty in the purposeful absence of motion management and in the absence of large, low frequency drifts (periods greater than the beam width divided by the couch velocity) or randomness in the breathing displacement yields very favorable results. Instead of interference effects, only small blurring is observed because of the averaging of many breathing cycles and beamlets and the avoidance of interference. Dose painting during respiration with helical tomotherapy is feasible in certain situations without motion management. A simple recommendation is to make respiration as regular as possible without low frequency drifting. The blurring is just small enough to suggest that it may be acceptable to deliver without motion management if the motion is equal to the beam width or smaller (at respiration frequencies) when registered to the average position.


Assuntos
Movimento , Imagens de Fantasmas , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Respiração , Humanos , Neoplasias Pulmonares/fisiopatologia , Neoplasias Pulmonares/radioterapia , Dosagem Radioterapêutica
18.
Int J Radiat Oncol Biol Phys ; 74(4): 1290-7, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19394157

RESUMO

PURPOSE: To investigate delivery quality assurance (DQA) discrepancies observed for a subset of helical tomotherapy patients. METHODS AND MATERIALS: Six tomotherapy patient plans were selected for analysis. Three had passing DQA ion chamber (IC) measurements, whereas 3 had measurements deviating from the expected dose by more than 3.0%. All plans used similar parameters, including: 2.5 cm field-width, 15-s gantry period, and pitch values ranging from 0.143 to 0.215. Preliminary analysis suggested discrepancies were associated with plans having predominantly small leaf open times (LOTs). To test this, patients with failing DQA measurements were replanned using an increased pitch of 0.287. New DQA plans were generated and IC measurements performed. Exit fluence data were also collected during DQA delivery for dose reconstruction purposes. RESULTS: Sinogram analysis showed increases in mean LOTs ranging from 29.8% to 83.1% for the increased pitch replans. IC measurements for these plans showed a reduction in dose discrepancies, bringing all measurements within +/-3.0%. The replans were also more efficient to deliver, resulting in reduced treatment times. Dose reconstruction results were in excellent agreement with IC measurements, illustrating the impact of leaf-timing inaccuracies on plans having predominantly small LOTs. CONCLUSIONS: The impact of leaf-timing inaccuracies on plans with small mean LOTs can be considerable. These inaccuracies result from deviations in multileaf collimator latency from the linear approximation used by the treatment planning system and can be important for plans having a 15-s gantry period. The ability to reduce this effect while improving delivery efficiency by increasing the pitch is demonstrated.


Assuntos
Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Aceleradores de Partículas/instrumentação , Controle de Qualidade , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/normas
19.
Int J Radiat Oncol Biol Phys ; 73(4): 1260-9, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19251098

RESUMO

PURPOSE: To assess patient setup corrections based on daily megavoltage CT (MVCT) imaging for four anatomic treatment sites treated on tomotherapy. METHOD AND MATERIALS: Translational and rotational setup corrections, based on registration of daily MVCT to planning CT images, were analyzed for 1,179 brain and head and neck (H&N), 1,414 lung, and 1,274 prostate treatment fractions. Frequencies of three-dimensional vector lengths, overall distributions of setup corrections, and patient-specific distributions of random and systematic setup errors were analyzed. RESULTS: Brain and H&N had lower magnitude positioning corrections and smaller variations in translational setup errors but were comparable in roll rotations. Three-dimensional vector translational shifts of larger magnitudes occurred more frequently for lung and prostate than for brain and H&N treatments, yet this was not observed for roll rotations. The global systematic error for prostate was 4.7 mm in the vertical direction, most likely due to couch sag caused by large couch extension distances. Variations in systematic errors and magnitudes of random translational errors ranged from 1.6 to 2.6 mm for brain and H&N and 3.2 to 7.2 mm for lung and prostate, whereas roll rotational errors ranged from 0.8 degrees to 1.2 degrees for brain and H&N and 0.5 degrees to 1.0 degrees for lung and prostate. CONCLUSIONS: Differences in setup were observed between brain, H&N, lung, and prostate treatments. Patient setup can be improved if daily imaging is performed. This analysis can assess the utilization of daily image guidance and allows for further investigation into improved anatomic site-specific and patient-specific treatments.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Neoplasias Encefálicas/radioterapia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imobilização/métodos , Neoplasias Pulmonares/radioterapia , Masculino , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada , Tomografia Computadorizada Espiral
20.
Phys Med Biol ; 53(18): 4855-73, 2008 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-18711250

RESUMO

The purpose of this study is to explain the unplanned longitudinal dose modulations that appear in helical tomotherapy (HT) dose distributions in the presence of irregular patient breathing. This explanation is developed by the use of longitudinal (1D) simulations of mock and surrogate data and tested with a fully 4D HT delivered plan. The 1D simulations use a typical mock breathing function which allows more flexibility to adjust various parameters. These simplified simulations are then made more realistic by using 100 surrogate waveforms all similarly scaled to produce longitudinal breathing displacements. The results include the observation that, with many waveforms used simultaneously, a voxel-by-voxel probability of a dose error from breathing is found to be proportional to the realistically random breathing amplitude relative to the beam width if the PTV is larger than the beam width and the breathing displacement amplitude. The 4D experimental test confirms that regular breathing will not result in these modulations because of the insensitivity to leaf motion for low-frequency dynamics such as breathing. These modulations mostly result from a varying average of the breathing displacements along the beam edge gradients. Regular breathing has no displacement variation over many breathing cycles. Some low-frequency interference is also possible in real situations. In the absence of more sophisticated motion management, methods that reduce the breathing amplitude or make the breathing very regular are indicated. However, for typical breathing patterns and magnitudes, motion management techniques may not be required with HT because typical breathing occurs mostly between fundamental HT treatment temporal and spatial scales. A movement beyond only discussing margins is encouraged for intensity modulated radiotherapy such that patient and machine motion interference will be minimized and beneficial averaging maximized. These results are found for homogeneous and longitudinal on-axis delivery for unplanned longitudinal dose modulations.


Assuntos
Artefatos , Neoplasias Pulmonares/radioterapia , Modelos Biológicos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Mecânica Respiratória , Carga Corporal (Radioterapia) , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Modelos Estatísticos , Movimento , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...