Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 282(37): 26707-26716, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-17613526

RESUMO

Phytanic acid and pristanic acid are derived from phytol, which enter the body via the diet. Phytanic acid contains a methyl group in position three and, therefore, cannot undergo beta-oxidation directly but instead must first undergo alpha-oxidation to pristanic acid, which then enters beta-oxidation. Both these pathways occur in peroxisomes, and in this study we have identified a novel peroxisomal acyl-CoA thioesterase named ACOT6, which we show is specifically involved in phytanic acid and pristanic acid metabolism. Sequence analysis of ACOT6 revealed a putative peroxisomal targeting signal at the C-terminal end, and cellular localization experiments verified it as a peroxisomal enzyme. Subcellular fractionation experiments showed that peroxisomes contain by far the highest phytanoyl-CoA/pristanoyl-CoA thioesterase activity in the cell, which could be almost completely immunoprecipitated using an ACOT6 antibody. Acot6 mRNA was mainly expressed in white adipose tissue and was co-expressed in tissues with Acox3 (the pristanoyl-CoA oxidase). Furthermore, Acot6 was identified as a target gene of the peroxisome proliferator-activated receptor alpha (PPARalpha) and is up-regulated in mouse liver in a PPARalpha-dependent manner.


Assuntos
Coenzima A/metabolismo , Ácidos Graxos/metabolismo , Peroxissomos/enzimologia , Ácido Fitânico/análogos & derivados , Tioléster Hidrolases/fisiologia , Animais , Sequência de Bases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Oxirredução , PPAR alfa/fisiologia , Ácido Fitânico/metabolismo
2.
FASEB J ; 20(11): 1855-64, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16940157

RESUMO

The maintenance of cellular levels of free fatty acids and acyl-CoAs, the activated form of free fatty acids, is extremely important, as imbalances in lipid metabolism have serious consequences for human health. Acyl-coenzyme A (CoA) thioesterases (ACOTs) hydrolyze acyl-CoAs to the free fatty acid and CoASH, and thereby have the potential to regulate intracellular levels of these compounds. We previously identified and characterized a mouse ACOT gene cluster comprised of six genes that apparently arose by gene duplications encoding acyl-CoA thioesterases with localizations in cytosol (ACOT1), mitochondria (ACOT2), and peroxisomes (ACOT3-6). However, the corresponding human gene cluster contains only three genes (ACOT1, ACOT2, and ACOT4) coding for full-length thioesterase proteins, of which only one is peroxisomal (ACOT4). We therefore set out to characterize the human genes, and we show here that the human ACOT4 protein catalyzes the activities of three mouse peroxisomal ACOTs (ACOT3, 4, and 5), being active on succinyl-CoA and medium to long chain acyl-CoAs, while ACOT1 and ACOT2 carry out similar functions to the corresponding mouse genes. These data strongly suggest that the human ACOT4 gene has acquired the functions of three mouse genes by a functional convergent evolution that also provides an explanation for the unexpectedly low number of human genes.


Assuntos
Evolução Molecular , Família Multigênica , Peroxissomos/enzimologia , Tioléster Hidrolases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA , Humanos , Camundongos , Dados de Sequência Molecular , Fases de Leitura Aberta , Palmitoil-CoA Hidrolase/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Gênica
3.
J Biol Chem ; 280(46): 38125-32, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16141203

RESUMO

Dicarboxylic acids are formed by omega-oxidation of fatty acids in the endoplasmic reticulum and degraded as the CoA ester via beta-oxidation in peroxisomes. Both synthesis and degradation of dicarboxylic acids occur mainly in kidney and liver, and the chain-shortened dicarboxylic acids are excreted in the urine as the free acids, implying that acyl-CoA thioesterases (ACOTs), which hydrolyze CoA esters to the free acid and CoASH, are needed for the release of the free acids. Recent studies show that peroxisomes contain several acyl-CoA thioesterases with different functions. We have now expressed a peroxisomal acyl-CoA thioesterase with a previously unknown function, ACOT4, which we show is active on dicarboxylyl-CoA esters. We also expressed ACOT8, another peroxisomal acyl-CoA thioesterase that was previously shown to hydrolyze a large variety of CoA esters. Acot4 and Acot8 are both strongly expressed in kidney and liver and are also target genes for the peroxisome proliferator-activated receptor alpha. Enzyme activity measurements with expressed ACOT4 and ACOT8 show that both enzymes hydrolyze CoA esters of dicarboxylic acids with high activity but with strikingly different specificities. Whereas ACOT4 mainly hydrolyzes succinyl-CoA, ACOT8 preferentially hydrolyzes longer dicarboxylyl-CoA esters (glutaryl-CoA, adipyl-CoA, suberyl-CoA, sebacyl-CoA, and dodecanedioyl-CoA). The identification of a highly specific succinyl-CoA thioesterase in peroxisomes strongly suggests that peroxisomal beta-oxidation of dicarboxylic acids leads to formation of succinate, at least under certain conditions, and that ACOT4 and ACOT8 are responsible for the termination of beta-oxidation of dicarboxylic acids of medium-chain length with the concomitant release of the corresponding free acids.


Assuntos
Palmitoil-CoA Hidrolase/fisiologia , Peroxissomos/metabolismo , Ácido Succínico/química , Tioléster Hidrolases/fisiologia , Animais , Western Blotting , Clonagem Molecular , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/metabolismo , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hidrólise , Rim/metabolismo , Cinética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , PPAR alfa/metabolismo , Palmitoil-CoA Hidrolase/química , Pirimidinas/farmacologia , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade por Substrato , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Fatores de Tempo , Distribuição Tecidual , Regulação para Cima
4.
J Biol Chem ; 279(21): 21841-8, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15007068

RESUMO

Peroxisomes are organelles that function in the beta-oxidation of long- and very long-chain acyl-CoAs, bile acid-CoA intermediates, prostaglandins, leukotrienes, thromboxanes, dicarboxylic fatty acids, pristanic acid, and xenobiotic carboxylic acids. The very long- and long-chain acyl-CoAs are mainly chain-shortened and then transported to mitochondria for further metabolism. We have now identified and characterized two peroxisomal acyl-CoA thioesterases, named PTE-Ia and PTE-Ic, that hydrolyze acyl-CoAs to the free fatty acid and coenzyme A. PTE-Ia and PTE-Ic show 82% sequence identity at the amino acid level, and a putative peroxisomal type 1 targeting signal of -AKL was identified at the carboxyl-terminal end of both proteins. Localization experiments using green fluorescent fusion protein showed PTE-Ia and PTE-Ic to be localized in peroxisomes. Despite their high level of sequence identity, we show that PTE-Ia is mainly active on long-chain acyl-CoAs, whereas PTE-Ic is mainly active on medium-chain acyl-CoAs. Lack of regulation of enzyme activity by free CoASH suggests that PTE-Ia and PTE-Ic regulate intraperoxisomal levels of acyl-CoA, and they may have a function in termination of beta-oxidation of fatty acids of different chain lengths. Tissue expression studies revealed that PTE-Ia is highly expressed in kidney, whereas PTE-Ic is most highly expressed in spleen, brain, testis, and proximal and distal intestine. Both PTE-Ia and PTE-Ic were highly up-regulated in mouse liver by treatment with the peroxisome proliferator WY-14,643 and by fasting in a peroxisome proliferator-activated receptor alpha-dependent manner. These data show that PTE-Ia and PTE-Ic have different functions based on different substrate specificities and tissue expression.


Assuntos
Receptores Citoplasmáticos e Nucleares/genética , Tioléster Hidrolases/química , Fatores de Transcrição/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Clonagem Molecular , Citosol/metabolismo , DNA Complementar/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde , Humanos , Hidrólise , Cinética , Fígado/metabolismo , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Oxigênio/metabolismo , Peroxissomos/metabolismo , Estrutura Terciária de Proteína , Pirimidinas/farmacologia , Receptores Citoplasmáticos e Nucleares/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Pele/metabolismo , Tioléster Hidrolases/metabolismo , Fatores de Tempo , Distribuição Tecidual , Fatores de Transcrição/química , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...