Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Metab Eng Commun ; 6: 49-55, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29896447

RESUMO

Yeast flocculation is the reversible formation of multicellular complexes mediated by lectin-like cell wall proteins binding to neighbouring cells. Strong flocculation can improve the inhibitor tolerance and fermentation performance of yeast cells in second generation bioethanol production. The strength of flocculation increases with the size of the flocculation protein and is strain dependent. However, the large number of internal repeats in the sequence of FLO1 from Saccharomyces cerevisiae S288c makes it difficult to recombinantly express the gene to its full length. In the search for novel flocculation genes resulting in strong flocculation, we discovered a DNA sequence, FLONF, that gives NewFlo phenotype flocculation in S. cerevisiae CEN.PK 113-7D. The nucleotide sequence of the internal repeats of FLONF differed from those of FLO1. We hypothesized that a chimaeric flocculation gene made up of a FLO1 variant derived from S. cerevisiae S288c and additional repeats from FLONF from S. cerevisiae CCUG 53310 would be more stable and easier to amplify by PCR. The constructed gene, FLOw, had 22 internal repeats compared to 18 in FLO1. Expression of FLOw in otherwise non-flocculating strains led to strong flocculation. Despite the length of the gene, the cassette containing FLOw could be easily amplified and transformed into yeast strains of different genetic background, leading to strong flocculation in all cases tested. The developed gene can be used as a self-immobilization technique or to obtain rapidly sedimenting cells for application in e.g. sequential batches without need for centrifugation.

2.
Biotechnol Biofuels ; 10: 213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919926

RESUMO

BACKGROUND: Considerable progress is being made in ethanol production from lignocellulosic feedstocks by fermentation, but negative effects of inhibitors on fermenting microorganisms are still challenging. Feeding preadapted cells has shown positive effects by sustaining fermentation in high-gravity simultaneous saccharification and co-fermentation (SSCF). Loss of cell viability has been reported in several SSCF studies on different substrates and seems to be the main reason for the declining ethanol production toward the end of the process. Here, we investigate how the combination of yeast preadaptation and feeding, cell flocculation, and temperature reduction improves the cell viability in SSCF of steam pretreated wheat straw. RESULTS: More than 50% cell viability was lost during the first 24 h of high-gravity SSCF. No beneficial effects of adding selected nutrients were observed in shake flask SSCF. Ethanol concentrations greater than 50 g L-1 led to significant loss of viability and prevented further fermentation in SSCF. The benefits of feeding preadapted yeast cells were marginal at later stages of SSCF. Yeast flocculation did not improve the viability but simplified cell harvest and improved the feasibility of the cell feeding strategy in demo scale. Cultivation at 30 °C instead of 35 °C increased cell survival significantly on solid media containing ethanol and inhibitors. Similarly, in multifeed SSCF, cells maintained the viability and fermentation capacity when the temperature was reduced from 35 to 30 °C during the process, but hydrolysis yields were compromised. By combining the yeast feeding and temperature change, an ethanol concentration of 65 g L-1, equivalent to 70% of the theoretical yield, was obtained in multifeed SSCF on pretreated wheat straw. In demo scale, the process with flocculating yeast and temperature profile resulted in 5% (w/w) ethanol, equivalent to 53% of the theoretical yield. CONCLUSIONS: Multifeed SSCF was further developed by means of a flocculating yeast and a temperature-reduction profile. Ethanol toxicity is intensified in the presence of lignocellulosic inhibitors at temperatures that are beneficial to hydrolysis in high-gravity SSCF. The counteracting effects of temperature on cell viability and hydrolysis call for more tolerant microorganisms, enzyme systems with lower temperature optimum, or full optimization of the multifeed strategy with temperature profile.

3.
Biotechnol Biofuels ; 10: 205, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878820

RESUMO

BACKGROUND: The most advanced strains of xylose-fermenting Saccharomyces cerevisiae still utilize xylose far less efficiently than glucose, despite the extensive metabolic and evolutionary engineering applied in their development. Systematic comparison of strains across literature is difficult due to widely varying conditions used for determining key physiological parameters. Here, we evaluate an industrial and a laboratory S. cerevisiae strain, which has the assimilation of xylose via xylitol in common, but differ fundamentally in the history of their adaptive laboratory evolution development, and in the cofactor specificity of the xylose reductase (XR) and xylitol dehydrogenase (XDH). RESULTS: In xylose and mixed glucose-xylose shaken bottle fermentations, with and without addition of inhibitor-rich wheat straw hydrolyzate, the specific xylose uptake rate of KE6-12.A (0.27-1.08 g gCDW-1 h-1) was 1.1 to twofold higher than that of IBB10B05 (0.10-0.82 g gCDW-1 h-1). KE6-12.A further showed a 1.1 to ninefold higher glycerol yield (0.08-0.15 g g-1) than IBB10B05 (0.01-0.09 g g-1). However, the ethanol yield (0.30-0.40 g g-1), xylitol yield (0.08-0.26 g g-1), and maximum specific growth rate (0.04-0.27 h-1) were in close range for both strains. The robustness of flocculating variants of KE6-12.A (KE-Flow) and IBB10B05 (B-Flow) was analyzed in high-gravity simultaneous saccharification and co-fermentation. As in shaken bottles, KE-Flow showed faster xylose conversion and higher glycerol formation than B-Flow, but final ethanol titres (61 g L-1) and cell viability were again comparable for both strains. CONCLUSIONS: Individual specific traits, elicited by the engineering strategy, can affect global physiological parameters of S. cerevisiae in different and, sometimes, unpredictable ways. The industrial strain background and prolonged evolution history in KE6-12.A improved the specific xylose uptake rate more substantially than the superior XR, XDH, and xylulokinase activities were able to elicit in IBB10B05. Use of an engineered XR/XDH pathway in IBB10B05 resulted in a lower glycerol rather than a lower xylitol yield. However, the strain development programs were remarkably convergent in terms of the achieved overall strain performance. This highlights the importance of comparative strain evaluation to advance the engineering strategies for next-generation S. cerevisiae strain development.

4.
Biotechnol J ; 10(8): 1185-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26211654

RESUMO

High capital costs and low reaction rates are major challenges for establishment of fermentation-based production systems in the bioeconomy. Using high cell density cultures is an efficient way to increase the volumetric productivity of fermentation processes, thereby enabling faster and more robust processes and use of smaller reactors. In this review, we summarize recent progress in the application of high cell density yeast bioprocesses for first and second generation bioethanol production. High biomass concentrations obtained by retention of yeast cells in the reactor enables easier cell reuse, simplified product recovery and higher dilution rates in continuous processes. High local cell density cultures, in the form of encapsulated or strongly flocculating yeast, furthermore obtain increased tolerance to convertible fermentation inhibitors and utilize glucose and other sugars simultaneously, thereby overcoming two additional hurdles for second generation bioethanol production. These effects are caused by local concentration gradients due to diffusion limitations and conversion of inhibitors and sugars by the cells, which lead to low local concentrations of inhibitors and glucose. Quorum sensing may also contribute to the increased stress tolerance. Recent developments indicate that high cell density methodology, with emphasis on high local cell density, offers significant advantages for sustainable second generation bioethanol production.


Assuntos
Biocombustíveis , Reatores Biológicos , Etanol , Microbiologia Industrial , Saccharomyces cerevisiae
5.
Appl Environ Microbiol ; 80(22): 6908-18, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25172866

RESUMO

Yeast has long been considered the microorganism of choice for second-generation bioethanol production due to its fermentative capacity and ethanol tolerance. However, tolerance toward inhibitors derived from lignocellulosic materials is still an issue. Flocculating yeast strains often perform relatively well in inhibitory media, but inhibitor tolerance has never been clearly linked to the actual flocculation ability per se. In this study, variants of the flocculation gene FLO1 were transformed into the genome of the nonflocculating laboratory yeast strain Saccharomyces cerevisiae CEN.PK 113-7D. Three mutants with distinct differences in flocculation properties were isolated and characterized. The degree of flocculation and hydrophobicity of the cells were correlated to the length of the gene variant. The effect of different strength of flocculation on the fermentation performance of the strains was studied in defined medium with or without fermentation inhibitors, as well as in media based on dilute acid spruce hydrolysate. Strong flocculation aided against the readily convertible inhibitor furfural but not against less convertible inhibitors such as carboxylic acids. During fermentation of dilute acid spruce hydrolysate, the most strongly flocculating mutant with dense cell flocs showed significantly faster sugar consumption. The modified strain with the weakest flocculation showed a hexose consumption profile similar to the untransformed strain. These findings may explain why flocculation has evolved as a stress response and can find application in fermentation-based biorefinery processes on lignocellulosic raw materials.


Assuntos
Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Biocombustíveis , Ácidos Carboxílicos/farmacologia , Celulose/metabolismo , Fermentação , Floculação , Furaldeído/farmacologia , Microbiologia Industrial , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Biotechnol Biofuels ; 7: 102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25050138

RESUMO

BACKGROUND: Two major hurdles for successful production of second-generation bioethanol are the presence of inhibitory compounds in lignocellulosic media, and the fact that Saccharomyces cerevisiae cannot naturally utilise pentoses. There are recombinant yeast strains that address both of these issues, but co-utilisation of glucose and xylose is still an issue that needs to be resolved. A non-recombinant way to increase yeast tolerance to hydrolysates is by encapsulation of the yeast. This can be explained by concentration gradients occuring in the cell pellet inside the capsule. In the current study, we hypothesised that encapsulation might also lead to improved simultaneous utilisation of hexoses and pentoses because of such sugar concentration gradients. RESULTS: In silico simulations of encapsulated yeast showed that the presence of concentration gradients of inhibitors can explain the improved inhibitor tolerance of encapsulated yeast. Simulations also showed pronounced concentration gradients of sugars, which resulted in simultaneous xylose and glucose consumption and a steady state xylose consumption rate up to 220-fold higher than that found in suspension culture. To validate the results experimentally, a xylose-utilising S. cerevisiae strain, CEN.PK XXX, was constructed and encapsulated in semi-permeable alginate-chitosan liquid core gel capsules. In defined media, encapsulation not only increased the tolerance of the yeast to inhibitors, but also promoted simultaneous utilisation of glucose and xylose. Encapsulation of the yeast resulted in consumption of at least 50% more xylose compared with suspended cells over 96-hour fermentations in medium containing both sugars. The higher consumption of xylose led to final ethanol titres that were approximately 15% higher. In an inhibitory dilute acid spruce hydrolysate, freely suspended yeast cells consumed the sugars in a sequential manner after a long lag phase, whereas no lag phase was observed for the encapsulated yeast, and glucose, mannose, galactose and xylose were utilised in parallel from the beginning of the cultivation. CONCLUSIONS: Encapsulation of xylose-fermenting S. cerevisiae leads to improved simultaneous and efficient utilisation of several sugars, which are utilised sequentially by suspended cells. The greatest improvement is obtained in inhibitory media. These findings show that encapsulation is a promising option for production of second-generation bioethanol.

7.
N Biotechnol ; 30(5): 516-22, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23711366

RESUMO

Pelleted growth provides many advantages for filamentous fungi, including decreased broth viscosity, improved aeration, stirring, and heat transfer. Thus, the factors influencing the probability of pellet formation of Rhizopus sp. in a defined medium was investigated using a multifactorial experimental design. Temperature, agitation intensity, Ca(2+)-concentration, pH, and solid cellulose particles, each had a significant effect on pelletization. Tween 80, spore concentration, and liquid volume were not found to have a significant effect. All of the effects were additive; no interactions were significant. The results were used to create a simple defined medium inducing pelletization, which was used for immobilization of a flocculating strain of Saccharomyces cerevisiae in the zygomycetes pellets. A flor-forming S. cerevisiae strain was also immobilized, while a non-flocculating strain colonized the pellets but was not immobilized. No adverse effects were detected as a result of the close proximity between the filamentous fungus and the yeast, which potentially allows for co-fermentation with S. cerevisiae immobilized in pellets of zygomycetes.


Assuntos
Cálcio/química , Polissorbatos/química , Rhizomucor/química , Rhizopus/química , Saccharomyces cerevisiae/química , Células Imobilizadas/química , Células Imobilizadas/citologia , Floculação , Rhizomucor/citologia , Rhizopus/citologia , Saccharomyces cerevisiae/citologia
8.
PLoS One ; 7(11): e49335, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23152898

RESUMO

Saccharomyces cerevisiae CBS8066 encapsulated in semi-permeable alginate or alginate-chitosan liquid core capsules have been shown to have an enhanced tolerance towards complex dilute-acid lignocellulose hydrolysates and the lignocellulose-derived inhibitor furfural, as well as towards high temperatures. The underlying molecular reasons for these effects have however not been elucidated. In this study we have investigated the response of the encapsulation on the proteome level in the yeast cells, in comparison with cells grown freely in suspension under otherwise similar conditions. The proteomic analysis was performed on whole cell protein extracts using nLC-MS/MS with TMT® labelling and 2-D DIGE. 842 and 52 proteins were identified using each method, respectively. The abundances of 213 proteins were significantly different between encapsulated and suspended cells, with good correlation between the fold change ratios obtained by the two methods for proteins identified in both. Encapsulation of the yeast caused an up-regulation of glucose-repressed proteins and of both general and starvation-specific stress responses, such as the trehalose biosynthesis pathway, and down-regulation of proteins linked to growth and protein synthesis. The encapsulation leads to a lack of nutrients for cells close to the core of the capsule due to mass transfer limitations. The triggering of the stress response may be beneficial for the cells in certain conditions, for example leading to the increased tolerance towards high temperatures and certain inhibitors.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Alginatos/farmacologia , Quitosana/farmacologia , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Anaerobiose/efeitos dos fármacos , Técnicas de Cultura Celular por Lotes , Cápsulas , Carbono/metabolismo , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Cromatografia Líquida , Regulação para Baixo/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Fermentação/efeitos dos fármacos , Furaldeído/farmacologia , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Espectrometria de Massas , Biossíntese de Proteínas/efeitos dos fármacos , Proteoma/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
Int J Mol Sci ; 13(9): 11881-11894, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109889

RESUMO

The ability of macroencapsulated Saccharomyces cerevisiae CBS8066 to withstand readily and not readily in situ convertible lignocellulose-derived inhibitors was investigated in anaerobic batch cultivations. It was shown that encapsulation increased the tolerance against readily convertible furan aldehyde inhibitors and to dilute acid spruce hydrolysate, but not to organic acid inhibitors that cannot be metabolized anaerobically. Gene expression analysis showed that the protective effect arising from the encapsulation is evident also on the transcriptome level, as the expression of the stress-related genes YAP1, ATR1 and FLR1 was induced upon encapsulation. The transcript levels were increased due to encapsulation already in the medium without added inhibitors, indicating that the cells sensed low stress level arising from the encapsulation itself. We present a model, where the stress response is induced by nutrient limitation, that this helps the cells to cope with the increased stress added by a toxic medium, and that superficial cells in the capsules degrade convertible inhibitors, alleviating the inhibition for the cells deeper in the capsule.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/fisiologia , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Lignina/química , Proteínas de Membrana Transportadoras/biossíntese , Transportadores de Ânions Orgânicos/biossíntese , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/biossíntese , Fatores de Transcrição/biossíntese
10.
Appl Microbiol Biotechnol ; 96(6): 1441-54, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23104646

RESUMO

This paper reviews the latest developments in microbial products by encapsulated microorganisms in a liquid core surrounded by natural or synthetic membranes. Cells can be encapsulated in one or several steps using liquid droplet formation, pregel dissolving, coacervation, and interfacial polymerization. The use of encapsulated yeast and bacteria for fermentative production of ethanol, lactic acid, biogas, L-phenylacetylcarbinol, 1,3-propanediol, and riboflavin has been investigated. Encapsulated cells have furthermore been used for the biocatalytic conversion of chemicals. Fermentation, using encapsulated cells, offers various advantages compared to traditional cultivations, e.g., higher cell density, faster fermentation, improved tolerance of the cells to toxic media and high temperatures, and selective exclusion of toxic hydrophobic substances. However, mass transfer through the capsule membrane as well as the robustness of the capsules still challenge the utilization of encapsulated cells. The history and the current state of applying microbial encapsulation for production processes, along with the benefits and drawbacks concerning productivity and general physiology of the encapsulated cells, are discussed.


Assuntos
Bactérias/metabolismo , Microbiologia Industrial/métodos , Leveduras/metabolismo , Bactérias/química , Etanol/metabolismo , Fermentação , Microbiologia Industrial/instrumentação , Ácido Láctico/metabolismo , Leveduras/química
11.
Electron. j. biotechnol ; 15(3): 5-5, May 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-640549

RESUMO

Background: Robust second generation bioethanol processes require microorganisms able to ferment inhibitory lignocellullosic hydrolysates. In this study, the inhibitor tolerance and flocculation characteristics of Saccharomyces cerevisiae CCUG53310 were evaluated in comparison with S. cerevisiae CBS8066. Results: The flocculating strain CCUG53310 could rapidly ferment all hexoses in dilute acid spruce hydrolysate, while CBS8066 was strongly inhibited in this medium. In synthetic inhibitory media, CCUG53310 was more tolerant to carboxylic acids and furan aldehydes, but more sensitive than CBS8066 to phenolic compounds. Despite the higher tolerance, the increase in expression of the YAP1, ATR1 and FLR1 genes, known to confer resistance to lignocellulose-derived inhibitors, was generally smaller in CCUG53310 than in CBS8066 in inhibitory media. The flocculation of CCUG53310 was linked to the expression of FLO8, FLO10 and one or more of FLO1, FLO5 or FLO9. Flocculation depended on cell wall proteins and Ca2+ ions, but was almost unaffected by other compounds and pH values typical for lignocellulosic media. Conclusions: S. cerevisiae CCUG53310 can be characterised as being very robust, with great potential for industrial fermentation of lignocellulosic hydrolysates relatively low in phenolic inhibitors.


Assuntos
Biocombustíveis , Etanol , Lignina , Saccharomyces cerevisiae , Leveduras , Celulose , Fermentação , Floculação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...