Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(17): 3387-3395, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626401

RESUMO

New ideal-gas thermochemistry Cp°(T), H°(T), S°(T), and G°(T) are predicted for 53 species involved in the thermal destruction of perfluorinated sulfonic acids (PFSAs) ranging from C2 to C8 in perfluorinated alkyl chain length. Species were selected by considering both the pyrolytic and oxidative pathways of PFSA destruction. After the sulfur-containing moieties are removed, subsequent reactions largely involve species from a prior set of thermochemistry for the thermal destruction of perfluorinated carboxylic acids (Ram et al., J. Phys. Chem. A, 2024, 128, 7, 1313-1326). Enthalpies of formation at 0 K are computed using a new isogyric reaction scheme. Rigid-rotor harmonic-oscillator partition functions were calculated over a 200-2500 K temperature range using rovibrational properties at G4 (≤C3S1 species) and M06-2X-D3(0)/def2-QZVPP (≥C4S1 species), employing the 1D hindered rotor approximation to correct for torsional modes. Seven-coefficient NASA polynomial fits are reported in standardized formats. Bond dissociation energies and important reaction equilibria are examined to provide insights into the reactivity of potentially persistent species. Extrapolated NASA polynomials are also systematically predicted for 126 species larger than C8/C8S1 in size, allowing reasonably accurate estimates of thermochemistry without the need for expensive electronic structure calculations.

2.
J Phys Chem A ; 128(7): 1313-1326, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38335280

RESUMO

New thermochemical properties, Cp°(T), H°(T), S°(T), and G°(T), are predicted for 123 species involved in the thermal destruction of perfluorinated carboxylic acids (PFCAs) using computational quantum chemistry and ideal-gas statistical mechanics. Relevant species were identified from the development of mechanisms for the pyrolysis and oxidation of PFCAs of C2 to C8 in length. Partition functions were obtained from the results of calculations at the G4 level for species up to C4 in length and M06-2X-D3(0)/def2-QZVPP for species C5 to C8 in length. The 1D hindered-rotor approximation was used to correct for torsional modes in the larger species. Ideal-gas thermochemistry was computed and fitted to 7-parameter NASA polynomials over a 200-2500 K temperature range, and the data are provided in standardized format. To gauge the effects of both method and basis set choice, enthalpies of formation at 0 K are calculated from various other density functionals (including B3LYP and ωB97XD), basis sets, and composite model chemistries (CBS-QB3). They are benchmarked against data from the Active Thermochemical Tables, high-level ANL0 calculations from the literature, and G4 calculations from this work. The effects of internal rotations and other anharmonicities are discussed, and bond dissociation energies and reaction equilibria provide mechanistic insights.

3.
J Chem Theory Comput ; 18(8): 4774-4794, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35849729

RESUMO

We report an analytical bond energy from bond orders and populations (BEBOP) model that provides intramolecular bond energy decompositions for chemical insight into the thermochemistry of molecules. The implementation reported here employs a minimum basis set Mulliken population analysis on well-conditioned Hartree-Fock orbitals to decompose total electronic energies into physically interpretable contributions. The model's parametrization scheme is based on atom-specific parameters for hybridization and atom pair-specific parameters for short-range repulsion and extended Hückel-type bond energy term fitted to reproduce CBS-QB3 thermochemistry data. The current implementation is suitable for molecules involving H, Li, Be, B, C, N, O, and F atoms, and it can be used to analyze intramolecular bond energies of molecular structures at optimized stationary points found from other computational methods. This first-generation model brings the computational cost of a Hartree-Fock calculation using a large triple-ζ basis set, and its atomization energies are comparable to those from widely used hybrid Kohn-Sham density functional theory (DFT, as benchmarked to 109 species from the G2/97 test set and an additional 83 reference species). This model should be useful for the community by interpreting overall ab initio molecular energies in terms of physically insightful bond energy contributions, e.g., bond dissociation energies, resonance energies, molecular strain energies, and qualitative energetic contributions to the activation barrier in chemical reaction mechanisms. This work reports a critical benchmarking of this method as well as discussions of its strengths and weaknesses compared to hybrid DFT (i.e., B3LYP, M062X, PBE0, and APF methods), and other cost-effective approximate Hamiltonian semiempirical quantum methods (i.e., AM1, PM6, PM7, and DFTB3).


Assuntos
Termodinâmica , Teoria da Densidade Funcional , Estrutura Molecular
4.
J Phys Chem A ; 125(23): 4943-4956, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34101445

RESUMO

Polyesters synthesized from 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD) and terephthalic acid (TPA) are improved alternatives to toxic polycarbonates based on bisphenol A. In this work, we use ωB97X-D/LANL2DZdp calculations, in the presence of a benzaldehyde polarizable continuum model solvent, to show that esterification of TMCD and TPA will reduce and subsequently dehydrate a dimethyl tin oxide catalyst, becoming ligands on the now four-coordinate complex. This reaction then proceeds most plausibly by an intramolecular acyl-transfer mechanism from the tin complex, aided by a coordinated proton donor such as hydronium. These findings are a key first step in understanding polyester synthesis and avoiding undesirable side reactions during production.

5.
J Phys Chem A ; 124(50): 10600-10615, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33275443

RESUMO

Concentrations in GC-MS using electron-ionization mass spectrometry can be determined without pure calibration standards through prediction of relative total-ionization cross sections. An atom- and group-based artificial neural network (FF-NN-AG) model is created to generate EI cross sections and calibrations for organic compounds. This model is easy to implement and is more accurate than the widely used atom-additivity-based correlation of Fitch and Sauter (Anal. Chem. 1983). Ninety-two new measurements of experimental EI cross sections (70-75 eV) are joined with different interlaboratory datasets, creating a 396-compound cross-section database, the largest to date. The FF-NN-AG model uses 16 atom-type descriptors, 79 structural-group descriptors, and one hidden layer of 10 nodes, trained 500 times. In each cycle, 96% of the compounds in this database are freshly chosen at random, and then the model is tested with the remaining 4%. The resulting r2 is 0.992 versus 0.904 for the Fitch and Sauter correlation, root mean square deviation is 2.8 versus 9.2, and maximum relative error is 0.30 versus 0.73. As an example of the model's use, a list of cross sections is generated for various sugars and anhydrosugars.

6.
J Phys Chem A ; 123(1): 120-131, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30484643

RESUMO

Quantum-chemical calculations show how low barriers to anomerization and shifting equilibria cause a significant presence of different monosaccharide isomers in high-temperature processes such as pyrolysis. The transition between isomeric forms of monosaccharides is long-studied, but examination has typically been limited to the solution phase and to pyranose isomers. Processes and rates of anomerization by reversible, gas-phase ring-opening and -closing reactions were predicted for the monosaccharides d-glucose, d-mannose, d-galactose, d-xylose, l-arabinose, and d-glucuronic acid. Structures and thermochemistry were computed for stable species and pericyclic transition states using CBS-QB3, and high-pressure-limit Arrhenius reaction parameters were predicted and fitted from 300 to 1000 K. Activation energies for the ring-opening reactions were 162-217 kJ/mol for four-center pericyclic separation of the lactol group but were reduced by catalytic participation of a hydroxyl group within the monosaccharide or an external R-OH group represented by an explicit water molecule, reaching activation energies as low as 97 and 67 kJ/mol, respectively. Equilibrium constants implied increasing fractions of furanose and linear aldehyde anomers with increasing temperature.

7.
Phys Chem Chem Phys ; 21(1): 171-183, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30516179

RESUMO

Photo-degradation of organic pollutants plays an important role in their removal from the environment. This study provides an experimental and theoretical account of the reaction of singlet oxygen O2(1Δg) with the biodegradable-resistant species of phenol in an aqueous medium. The experiments combine customised LED-photoreactors, high-performance liquid chromatography (HPLC), and electron paramagnetic resonance (EPR) imaging, employing rose bengal as a sensitiser. Guided by density functional theory (DFT) calculations at the M062X level, we report the mechanism of the reaction and its kinetic model. Addition of O2(1Δg) to the phenol molecule branches into two competitive 1,4-cycloaddition and ortho ene-type routes, yielding 2,3-dioxabicyclo[2.2.2]octa-5,7-dien-1-ol (i.e., 1,4-endoperoxide 1-hydroxy-2,5-cyclohexadiene) and 2-hydroperoxycyclohexa-3,5-dien-1-one, respectively. Unimolecular rearrangements of the 1,4-endoperoxide proceed in a facile exothermic reaction to form the only experimentally detected product, para-benzoquinone. EPR revealed the nature of the oxidation intermediates and corroborated the appearance of O2(1Δg) as the only active radical participating in the photosensitised reaction. Additional experiments excluded the formation of hydroxyl (HO˙), hydroperoxyl (HO2˙), and phenoxy intermediates. We detected for the first time the para-semibenzoquinone anion (PSBQ), supporting the reaction pathway leading to the formation of para-benzoquinone. Our experiments and the water-solvation model result in the overall reaction rates of kr-solvation = 1.21 × 104 M-1 s-1 and kr = 1.14 × 104 M-1 s-1, respectively. These results have practical application to quantify the degradation of phenol in wastewater treatment.

8.
J Phys Chem A ; 121(17): 3199-3206, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28406298

RESUMO

Dissolved organic matter (DOM) acts as an effective photochemical sensitizer that produces the singlet delta state of molecular oxygen (O21Δg), a powerful oxidizer that removes aniline from aqueous solutions. However, the exact mode of this reaction, the p- to o-iminobenzoquinone ratio, and the selectivity of one over the other remain largely speculative. This contribution resolves these uncertainties. We report, for the first time, a comprehensive mechanistic and kinetic account of the oxidation of aniline with the singlet delta oxygen using B3LYP and M06 functionals in both gas and aqueous phases. Reaction mechanisms have been mapped out at E, H, and G scales. The 1,4-cycloaddition of O21Δg to aniline forms a 1,4-peroxide intermediate (M1), which isomerizes via a closed-shell mechanism to generate a p-iminobenzoquinone molecule. On the other hand, the O21Δg ene-type reaction forms an o-iminobenzoquinone product when the hydroperoxyl bond breaks, splitting hydroxyl from the 1,2-hydroperoxide (M3) moiety. The gas-phase model predicts the formation of both p- and o-iminobenzoquinones. In the latter model, the M1 adduct displays the selectivity of up to 96%. A water-solvation model predicts that M1 decomposes further, forming only p-iminobenzoquinone with a rate constant of k = 1.85 × 109 (L/(mol s)) at T = 313 K. These results corroborate the recent experimental findings of product concentration profile in which p-iminobenzoquinonine represents the only detected product.

9.
J Phys Chem A ; 121(11): 2221-2231, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28225281

RESUMO

This contribution investigates thermokinetic parameters of bimolecular gas-phase reactions involving the amine (NH2) radical and a large number of saturated and unsaturated hydrocarbons. These reactions play an important role in combustion and pyrolysis of nitrogen-rich fuels, most notably biomass. Computations performed at the CBS-QB3 level and based on the conventional transition-state theory yield potential-energy surfaces and reaction rate constants, accounting for tunnelling effects and the presence of hindered rotors. In an analogy to other H abstraction systems, we demonstrate only a small influence of variational effects on the rate constants for selected reaction. The studied reactions cover the abstraction of hydrogen atoms by the NH2 radical from the C-H bonds in C1-C4 species, and four C5 hydrocarbons of 2-methylbutane, 2-methyl-1-butene, 3-methyl-1-butene, 3-methyl-2-butene, and 3-methyl-1-butyne. For the abstraction of H from methane, in the temperature windows 300-500 and 1600-2000 K, the calculated reaction rate constants concur with the available experimental measurements, i.e., kcalculated/kexperimetal = 0.3-2.5 and 1.1-1.4, and the previous theoretical estimates. Abstraction of H atom from ethane attains the ratio of kcalculated/kexperimetal equal to 0.10-1.2 and 1.3-1.5 over the temperature windows of available experimental measurements, i.e., 300-900 K and 1500-2000 K, respectively. For the remaining alkanes (propane and n-butane), the average kexperimental/kcalculated ratio remains 2.6 and 1.3 over the temperature range of experimental data. Also, comparing the calculated standard enthalpy of reaction (ΔrH°298) with the available experimental measurements for alkanes, we found the mean unsigned error of computations as 3.7 kJ mol-1. This agreement provides an accuracy benchmark of our methodology, affording the estimation of the unreported kinetic parameters for H abstractions from alkenes and alkynes. On the basis of the Evans-Polanyi plots, calculated bond dissociation enthalpies (BDHs) correlate linearly with the standard enthalpy of activation (Δ⧧H°298), allowing estimation of the enthalpy barrier for reaction of NH2 with other hydrocarbons in future work. Finally, we develop six sets of the generalized Arrhenius rate parameters for H abstractions from different C-H bond types. These parameters extend the application of the present results to any noncyclic hydrocarbon interacting with the NH2 radical.

10.
J Phys Chem A ; 116(49): 11997-2013, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23082925

RESUMO

Concerted reactions are proposed to be keys to understanding thermal decomposition of glucose in the absence of ionic chemistry, including molecular catalysis by ROH molecules such as H(2)O, other glucose molecules, and most of the intermediates and products. Concerted transition states, elementary-reaction pathways, and rate coefficients are computed for pyrolysis of ß-D-glucose (ß-D-glucopyranose), the monomer of cellulose, and for related molecules, giving an improved and elementary-reaction interpretation of the reaction network proposed by Sanders et al. (J. Anal. Appl. Pyrolysis, 2003, 66, 29-50). Reactions for ring-opening and formation, ring contraction, retro-aldol condensation, keto-enol tautomerization, and dehydration are included. The dehydration reactions are focused on bicyclic ring formations that lead to levoglucosan and 1,6-ß-D-anhydrousglucofuranose. The bimolecular ROH-assisted reactions are found to have lower activation energy compared to the unimolecular reactions. The same dehydration reaction to levoglucosan should occur for cellulose going to cellosan (e.g., cellotriosan) plus a shortened cellulose chain, a hypothesis supported by the very similar activation energies computed when alternate groups were substituted at the C1 glycosidic oxygen. The principles of Sanders et al. that distinguish D-glucose, D-fructose, sucrose, and cellulose pyrolysis prove useful in providing qualitative insights into cellulose pyrolysis.


Assuntos
Celulose/química , Glucose/química , Cinética , Teoria Quântica
11.
Angew Chem Int Ed Engl ; 49(21): 3572-97, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20446278

RESUMO

Biofuels, such as bio-ethanol, bio-butanol, and biodiesel, are of increasing interest as alternatives to petroleum-based transportation fuels because they offer the long-term promise of fuel-source regenerability and reduced climatic impact. Current discussions emphasize the processes to make such alternative fuels and fuel additives, the compatibility of these substances with current fuel-delivery infrastructure and engine performance, and the competition between biofuel and food production. However, the combustion chemistry of the compounds that constitute typical biofuels, including alcohols, ethers, and esters, has not received similar public attention. Herein we highlight some characteristic aspects of the chemical pathways in the combustion of prototypical representatives of potential biofuels. The discussion focuses on the decomposition and oxidation mechanisms and the formation of undesired, harmful, or toxic emissions, with an emphasis on transportation fuels. New insights into the vastly diverse and complex chemical reaction networks of biofuel combustion are enabled by recent experimental investigations and complementary combustion modeling. Understanding key elements of this chemistry is an important step towards the intelligent selection of next-generation alternative fuels.


Assuntos
Biocombustíveis , Etanol , Etanol/química , Oxigênio/química
12.
J Phys Chem A ; 113(13): 3177-85, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19271758

RESUMO

Kinetics of enol generation from propene has been predicted in an effort to understand the presence of enols in flames. A potential energy surface for reaction of OH with propene was computed by CCSD(T)/cc-pVDZ//B3LYP/cc-pVTZ calculations. Rate constants of different product channels and branching ratios were then calculated using the Master Equation formulation (J. Phys. Chem. A 2006, 110, 10528). Of the two enol products, ethenol is dominant over propenol, and its pathway is also the dominant pathway for the OH + propene addition reactions to form bimolecular products. In the temperature range considered, hydrogen abstraction dominated propene + OH consumption by a branching ratio of more than 90%. Calculated rate constants of enol formation were included in the Utah Surrogate Mechanism to model the enol profile in a cyclohexane premixed flame. The extended model shows consistency with experimental data and gives 5% contribution of ethenol formation from OH + propene reaction, the rest coming from ethene + OH.


Assuntos
Alcenos/química , Etanol/análogos & derivados , Etanol/química , Radical Hidroxila/química , Modelos Químicos , Propanóis/química , Simulação por Computador , Elétrons , Cinética , Modelos Moleculares , Conformação Molecular
13.
Phys Chem Chem Phys ; 11(9): 1328-39, 2009 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19224033

RESUMO

Molecular-beam synchrotron photoionization mass spectrometry and electron-ionization mass spectrometry are used for measurements of species mole fraction profiles for low-pressure premixed dimethyl ether (DME) flames with equivalence ratios ranging from near-stoichiometric conditions (Phi = 0.93) to fuel-rich flames near the limits of flat-flame stability (Phi = 1.86). The results are compared with predictions of a recently modified kinetic model for DME combustion [Zhao et al., Int. J. Chem. Kinet., 2008, 40, 1-18] that has been extensively tested against laminar flame speed measurements, jet-stirred reactor experiments, pyrolysis and oxidation experiments in flow reactors, species measurements for burner-stabilized flames and ignition delay measurements in shock tubes. The present comprehensive measurements of the composition of reaction intermediates over a broad range of equivalence ratios considerably extends the range of the previous experiments used for validation of this model and allows for an accurate determination of contributions of individual reactions to the formation or destruction of any given flame species. The excellent agreement between measurements and predictions found for all major and most intermediate species over the entire range of equivalence ratios provides a uniquely sensitive test of details of the kinetic model. The dependence on equivalence ratio of the characteristic reaction paths in DME flames is examined within the framework of reaction path analyses.

14.
J Phys Chem A ; 112(39): 9255-65, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18505242

RESUMO

This work provides experimental evidence on how the molecular compositions of fuel-rich low-pressure premixed flames are influenced as the oxygenates dimethyl ether (DME) or ethanol are incrementally blended into the propene fuel. Ten different flames with a carbon-to-oxygen ratio of 0.5, ranging from 100% propene (phi = 1.5) to 100% oxygenated fuel (phi = 2.0), are analyzed with flame-sampling molecular-beam mass spectrometry employing electron- or photoionization. Absolute mole fraction profiles for flame species with masses ranging from m/z = 2 (H2) to m/z = 80 (C6H8) are analyzed with particular emphasis on the formation of harmful emissions. Fuel-specific destruction pathways, likely to be initiated by hydrogen abstraction, appear to lead to benzene from propene combustion and to formaldehyde and acetaldehyde through DME and ethanol combustion, respectively. While the concentration of acetaldehyde increases 10-fold as propene is substituted by ethanol, it decreases as propene is replaced with DME. In contrast, the formaldehyde concentration rises only slightly with ethanol replacement but increases markedly with addition of DME. Allyl and propargyl radicals, the dominant precursors for benzene formation, are likely to be produced directly from propene decomposition or via allene and propyne. Benzene formation through propargyl radicals formed via unsaturated C2 intermediates in the decomposition of DME and ethanol is negligibly small. As a consequence, DME and ethanol addition lead to similar reductions of the benzene concentration.

15.
Phys Chem Chem Phys ; 10(1): 20-34, 2008 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18075680

RESUMO

The combination of multiplexed mass spectrometry with photoionization by tunable-synchrotron radiation has proved to be a powerful tool to investigate elementary reaction kinetics and the chemistry of low-pressure flames. In both of these applications, multiple-mass detection and the ease of tunability of synchrotron radiation make it possible to acquire full sets of data as a function of mass, photon energy, and of the physical dimension of the system, e.g. distance from the burner or time after reaction initiation. The data are in essence an indirect image of the chemistry. The data can be quantitatively correlated and integrated along any of several dimensions to compare to traditional measurements such as time or distance profiles of individual chemical species, but it can also be directly interpreted in image form. This perspective offers an overview of flame chemistry and chemical kinetics measurements that combine tunable photoionization with multiple-mass detection, emphasizing the overall insight that can be gained from multidimensional data on these systems. The low-pressure flame apparatus is capable of providing isomer-resolved mass spectra of stable and radical species as a function of position in the flame. The overall chemical structure of the flames can be readily seen from images of the evolving mass spectrum as distance from the burner increases, with isomer-specific information given in images of the photoionization efficiency. Several flames are compared in this manner, with a focus on identification of global differences in fuel-decomposition and soot-formation pathways. Differences in the chemistry of flames of isomeric fuels can be discerned. The application of multiplexed synchrotron photoionization to elementary reaction kinetics permits identification of time-resolved isomeric composition in reacting systems. The power of this technique is illustrated by the separation of direct and dissociative ionization signals in the reaction of C(2)H(5) with O(2); by the resolution of isomeric products in reactions of the ethynyl (C(2)H) radical; and by preliminary observation of branching to methyl + propargyl products in the self-reaction of vinyl radicals. Finally, prospects for future research using multiplexed photoionization mass spectrometry are explored.


Assuntos
Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Compostos Orgânicos/química , Oxigênio/química , Síncrotrons , Radicais Livres/química , Cinética , Lasers , Fotoquímica/métodos , Fotólise , Sensibilidade e Especificidade
16.
J Phys Chem A ; 111(19): 4093-101, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17388390

RESUMO

The influences of fuel-specific destruction pathways on flame chemistry are determined for two isomeric ester fuels, methyl acetate, CH3(CO)OCH3, and ethyl formate, H(CO)OC2H5, used as model representatives for biodiesel compounds, and their potential for forming air pollutants is addressed. Measurements are presented of major and intermediate species mole fractions in premixed, laminar flat flames using molecular-beam sampling and isomer-selective VUV-photoionization mass spectrometry. The observed intermediate species concentrations depend crucially on decomposition of the different radicals formed initially from the fuels. The methyl acetate structure leads to preferential formation of formaldehyde, while the ethyl formate isomer favors the production of acetaldehyde. Ethyl formate also yields higher concentrations of the C2 species (C2H2 and C2H4) and C4 species (C4H2 and C4H4). Benzene concentrations, while larger for ethyl formate, are at least an order of magnitude smaller for both flames than seen for simple hydrocarbon fuels (ethylene, ethane, propene, and propane).


Assuntos
Acetatos/química , Ésteres/química , Incêndios , Ésteres do Ácido Fórmico/química , Isomerismo , Modelos Químicos
17.
J Phys Chem A ; 110(13): 4376-88, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16571041

RESUMO

The isomeric composition of C(5)H(x) (x = 2-6, 8) flame species is analyzed for rich flames fueled by allene, propyne, cyclopentene, or benzene. Different isomers are identified by their known ionization energies and/or by comparison of the observed photoionization efficiencies with theoretical simulations based on calculated ionization energies and Franck-Condon factors. The experiments combine flame-sampling molecular-beam mass spectrometry with photoionization by tunable vacuum-UV synchrotron radiation. The theoretical simulations employ the rovibrational properties obtained with B3LYP/6-311++G(d,p) density functional theory and electronic energies obtained from QCISD(T) electronic structure calculations extrapolated to the complete basis set limit. For C(5)H(3), the comparison reveals the presence of both the H(2)CCCCCH (i-C(5)H(3)) and the HCCCHCCH (n-C(5)H(3)) isomer. The simulations also suggest a modest amount of cyclo-CCHCHCCH-, which is consistent with a minor signal for C(5)H(2) that is apparently due to cyclo-CCHCCCH-. For C(5)H(4), contributions from the CH(2)CCCCH(2) (1,2,3,4-pentatetraene), CH(2)CCHCCH, and CH(3)CCCCH (1,3-pentadiyne) isomers are evident, as is some contribution from CHCCH(2)CCH (1,4-pentadiyne) in the cyclopentene and benzene flames. Signal at m/z = 65 originates mainly from the cyclopentadienyl radical. For C(5)H(6), contributions from cyclopentadiene, CH(3)CCCHCH(2), CH(3)CHCHCCH, and CH(2)CHCH(2)CCH are observed. No signal is observed for C(5)H(7) species. Cyclopentene, CH(2)CHCHCHCH(3) (1,3-pentadiene), CH(3)CCCH(2)CH(3) (2-pentyne), and CH(2)CHCH(2)CHCH(2) (1,4-pentadiene) contribute to the signal at m/z = 68. Newly derived ionization energies for i- and n-C(5)H(3) (8.20 +/- 0.05 and 8.31 +/- 0.05 eV, respectively), CH(2)CCHCCH (9.22 +/- 0.05 eV), and CH(2)CHCH(2)CCH (9.95 +/- 0.05 eV) are within the error bars of the QCISD(T) calculations. The combustion chemistry of the observed C(5)H(x) intermediates and the impact on flame chemistry models are discussed.

18.
J Phys Chem A ; 110(9): 3254-60, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16509650

RESUMO

Before the recent discovery that enols are intermediates in many flames, they appeared in no combustion models. Furthermore, little is known about enols' flame chemistry. Enol formation in low-pressure flames takes place in the preheat zone, and its precursors are most likely fuel species or the early products of fuel decomposition. The OH + ethene reaction has been shown to dominate ethenol production in ethene flames although this reaction has appeared insufficient to describe ethenol formation in all hydrocarbon oxidation systems. In this work, the mole fraction profiles of ethenol in several representative low-pressure flames are correlated with those of possible precursor species as a means for judging likely formation pathways in flames. These correlations and modeling suggest that the reaction of OH with ethene is in fact the dominant source of ethenol in many hydrocarbon flames, and that addition-elimination reactions of OH with other alkenes are also likely to be responsible for enol formation in flames. On this basis, enols are predicted to be minor intermediates in most flames and should be most prevalent in olefinic flames where reactions of the fuel with OH can produce enols directly.

19.
J Phys Chem A ; 110(10): 3670-8, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16526650

RESUMO

Quantitative identification of isomers of hydrocarbon radicals in flames is critical to understanding soot formation. Isomers of C4H3 and C4H5 in flames fueled by allene, propyne, cyclopentene, or benzene are identified by comparison of the observed photoionization efficiencies with theoretical simulations based on calculated ionization energies and Franck-Condon factors. The experiments combine molecular-beam mass spectrometry (MBMS) with photoionization by tunable vacuum-ultraviolet synchrotron radiation. The theoretical simulations employ the rovibrational properties obtained with B3LYP/6-311++G(d,p) density functional theory and electronic energies obtained from QCISD(T) ab initio calculations extrapolated to the complete basis set limit. For C4H3, the comparisons reveal the presence of the resonantly stabilized CH2CCCH isomer (i-C4H3). For C4H5, contributions from the CH2CHCCH2 (i-C4H5) and some combination of the CH3CCCH2 and CH3CHCCH isomers are evident. Quantitative concentration estimates for these species are made for allene, cyclopentene, and benzene flames. Because of low Franck-Condon factors, sensitivity to n-isomers of both C4H3 and C4H5 is limited. Adiabatic ionization energies, as obtained from fits of the theoretical predictions to the experimental photoionization efficiency curves, are within the error bars of the QCISD(T) calculations. For i-C4H3 and i-C4H5, these fitted adiabatic ionization energies are (8.06 +/- 0.05) eV and (7.60 +/- 0.05) eV, respectively. The good agreement between the fitted and theoretical ionization thresholds suggests that the corresponding theoretically predicted radical heats of formation (119.1, 76.3, 78.7, and 79.1 kcal/mol at 0 K for i-C4H3, i-C4H5, CH3CCCH2, and CH3CHCCH, respectively) are also quite accurate.


Assuntos
Compostos Inorgânicos de Carbono/química , Gases , Prótons , Piridinas/química , Fuligem/química , Fenômenos Químicos , Química , Gases/metabolismo , Isomerismo , Espectrometria de Massas , Estrutura Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Science ; 308(5730): 1887-9, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15890844

RESUMO

Models for chemical mechanisms of hydrocarbon oxidation rely on spectrometric identification of molecular structures in flames. Carbonyl (keto) compounds are well-established combustion intermediates. However, their less-stable enol tautomers, bearing OH groups adjacent to carbon-carbon double bonds, are not included in standard models. We observed substantial quantities of two-, three-, and four-carbon enols by photoionization mass spectrometry of flames burning representative compounds from modern fuel blends. Concentration profiles demonstrate that enol flame chemistry cannot be accounted for purely by keto-enol tautomerization. Currently accepted hydrocarbon oxidation mechanisms will likely require revision to explain the formation and reactivity of these unexpected compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...