Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 117(5): 821-35, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23317151

RESUMO

Ab initio microcanonical rate constants were computed using Semi-Classical Transition State Theory (SCTST) and used in two master equation formulations (1D, depending on active energy with centrifugal corrections, and 2D, depending on total energy and angular momentum) to compute temperature-dependent rate constants for the title reactions using a potential energy surface obtained by sophisticated ab initio calculations. The 2D master equation was used at the P = 0 and P = ∞ limits, while the 1D master equation with centrifugal corrections and an empirical energy transfer parameter could be used over the entire pressure range. Rate constants were computed for 75 K ≤ T ≤ 2500 K and 0 ≤ [He] ≤ 10(23) cm(-3). For all temperatures and pressures important for combustion and for the terrestrial atmosphere, the agreement with the experimental rate constants is very good, but at very high pressures and T ≤ 200 K, the theoretical rate constants are significantly smaller than the experimental values. This effect is possibly due to the presence in the experiments of dimers and prereactive complexes, which were not included in the model calculations. The computed H/D kinetic isotope effects are in acceptable agreement with experimental data, which show considerable scatter. Overall, the agreement between experimental and theoretical H/D kinetic isotope effects is much better than in previous work, and an assumption of non-RRKM behavior does not appear to be needed to reproduce experimental observations.


Assuntos
Monóxido de Carbono/química , Radical Hidroxila/química , Teoria Quântica , Medição da Troca de Deutério , Isótopos/química , Cinética
2.
J Phys Chem Lett ; 3(11): 1549-53, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26285636

RESUMO

The potential energy surface and chemical kinetics for the reaction of HO with CO, which is an important process in both combustion and atmospheric chemistry, were computed using high-level ab initio quantum chemistry in conjunction with semiclassical transition state theory under the limiting cases of high and zero pressure. The reaction rate constants calculated from first principles agree extremely well with all available experimental data, which range in temperature over a domain that covers both combustion and terrestrial atmospheric chemistry. The role of quantum tunneling is confirmed to be extremely important, which supports recent work by Continetti and collaborators regarding the loss of hydrogen atoms from vibrationally excited states of HOCO. A sensitivity analysis has been carried out and serves as the basis for a plausible estimate of uncertainty in the calculations.

3.
J Phys Chem A ; 114(39): 10619-33, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20843047

RESUMO

Collisional energy transfer remains an important area of uncertainty in master equation simulations. Quasi-classical trajectory (QCT) calculations were used to examine the energy transfer probability density distribution (energy transfer kernel), which depends on translational temperature, on the nature of the collision partners, and on the initial and final total internal energies and angular momenta: P(E, J; E', J'). For this purpose, model potential energy functions were taken from the literature or were formulated for pyrazine + Ar and for ethane + Ar collisions. For each collision pair, batches of 10(5) trajectories were computed with three selected initial vibrational energies and five selected values for initial total angular momentum. Most trajectories were carried out with relative translational energy distributions at 300 K, but some were carried out at 1000 or 1200 K. In addition, some trajectories were computed for artificially "heavy" ethane, in which the H-atoms were assigned masses of 20 amu. The results were binned according to (ΔE, ΔJ), and a least-squares analysis was carried out by omitting the quasi-elastic trajectories from consideration. By trial-and-error, an empirical function was identified that fitted all 45 batches of trajectories with moderate accuracy. The results reveal significant correlations between initial and final energies and angular momenta. In particular, a strong correlation between ΔE and ΔJ depends on the smallest rotational constant in the excited polyatomic. These results show that the final rotational energy distribution is not independent of the initial distribution, showing that the plausible simplifying assumption described by Smith and Gilbert [Int. J. Chem. Kinet. 1988, 20, 307-329] and extended by Miller, Klippenstein, and Raffy [J. Phys. Chem. A 2002, 106, 4904-4913] is invalid for the systems studied.


Assuntos
Argônio/química , Etano/química , Pirazinas/química , Transferência de Energia , Simulação de Dinâmica Molecular , Teoria Quântica , Temperatura
4.
J Phys Chem A ; 110(25): 7888-97, 2006 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-16789777

RESUMO

Experimental data for the photoisomerization of trans-stilbene (S(1)) in thermal bath gases at pressures up to 20 bar obtained previously by Meyer, Schroeder, and Troe (J. Phys. Chem. A 1999, 103, 10528-10539) are modeled by using a full collisional-reaction master equation that includes non-RRKM (Rice-Ramsperger-Kassel-Marcus) effects due to slow intramolecular vibrational energy redistribution (IVR). The slow IVR effects are modeled by incorporating the theoretical results obtained recently by Leitner et al. (J. Phys. Chem. A 2003, 107, 10706-10716), who used the local random matrix theory. The present results show that the experimental rate constants of Meyer et al. are described to within about a factor of 2 over much of the experimental pressure range. However, a number of assumptions and areas of disagreement will require further investigation. These include a discrepancy between the calculated and experimental thermal rate constants near zero pressure, a leveling off of the experimental rate constants that is not predicted by theory and which depends on the identity of the collider gas, the need to use rate constants for collision-induced IVR that are larger than the estimated total collision rate constants, and the choice of barrier-crossing frequency. Despite these unsettled issues, the theory of Leitner et al. shows great promise for accounting for possible non-RRKM effects in an important class of reactions.


Assuntos
Simulação por Computador , Estilbenos/química , Transferência de Energia , Isomerismo , Fotoquímica , Pressão , Estereoisomerismo , Vibração
5.
J Phys Chem B ; 109(17): 8415-27, 2005 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16851988

RESUMO

The product distribution for the title reaction was studied using our time-of-flight mass spectrometer (TOFMS) connected to a tubular flow reactor. The methyl and hydroxyl radicals were produced by an excimer laser pulse (lambda = 193 nm) photolyzing acetone and nitrous oxide in the presence of excess water or hydrogen. Helium was used as the bath gas; the total density was held constant at 1.2 x 10(17) cm(-3). At 300 K the observations were consistent with singlet methylene ((1)CH(2)) and water as the main product channel with a small contribution of methanol. In contrast, at about 610 K three channels-formaldehyde isomers and methanol in addition to (1)CH(2) + H(2)O-are formed with similar yields. When acetone-d(6) was used, the production of both CHDO and CD(2)O was observed, indicating that two different formaldehyde-producing channels are operating simultaneously. These experimental results are compared with RRKM and master equation calculations on the basis of the properties of the methanol potential energy surface from a recent ab initio study.

6.
Chem Rev ; 99(8): 2115-2136, 1999 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-11849021
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...