Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 25(9): 100893, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179472

RESUMO

PURPOSE: Developmentally regulated Guanosine-5'-triphosphate-binding protein 1 (DRG1) is a highly conserved member of a class of GTPases implicated in translation. Although the expression of mammalian DRG1 is elevated in the central nervous system during development, and its function has been implicated in fundamental cellular processes, no pathogenic germline variants have yet been identified. Here, we characterize the clinical and biochemical consequences of DRG1 variants. METHODS: We collate clinical information of 4 individuals with germline DRG1 variants and use in silico, in vitro, and cell-based studies to study the pathogenicity of these alleles. RESULTS: We identified private germline DRG1 variants, including 3 stop-gained p.Gly54∗, p.Arg140∗, p.Lys263∗, and a p.Asn248Phe missense variant. These alleles are recessively inherited in 4 affected individuals from 3 distinct families and cause a neurodevelopmental disorder with global developmental delay, primary microcephaly, short stature, and craniofacial anomalies. We show that these loss-of-function variants (1) severely disrupt DRG1 messenger RNA/protein stability in patient-derived fibroblasts, (2) impair its GTPase activity, and (3) compromise its binding to partner protein ZC3H15. Consistent with the importance of DRG1 in humans, targeted inactivation of mouse Drg1 resulted in preweaning lethality. CONCLUSION: Our work defines a new Mendelian disorder of DRG1 deficiency. This study highlights DRG1's importance for normal mammalian development and underscores the significance of translation factor GTPases in human physiology and homeostasis.


Assuntos
Proteínas de Ligação ao GTP , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Proteínas de Transporte , GTP Fosfo-Hidrolases/genética , Mamíferos/metabolismo , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro
2.
Cell Mol Life Sci ; 78(23): 7219-7235, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34664086

RESUMO

GTPases are a large superfamily of evolutionarily conserved proteins involved in a variety of fundamental cellular processes. The developmentally regulated GTP-binding protein (DRG) subfamily of GTPases consists of two highly conserved paralogs, DRG1 and DRG2, both of which have been implicated in the regulation of cell proliferation, translation and microtubules. Furthermore, DRG1 and 2 proteins both have a conserved binding partner, DRG family regulatory protein 1 and 2 (DFRP1 and DFRP2), respectively, that prevents them from being degraded. Similar to DRGs, the DFRP proteins have also been studied in the context of cell growth control and translation. Despite these proteins having been implicated in several fundamental cellular processes they remain relatively poorly characterized, however. In this review, we provide an overview of the structural biology and biochemistry of DRG GTPases and discuss current understanding of DRGs and DFRPs in normal physiology, as well as their emerging roles in diseases such as cancer.


Assuntos
Proliferação de Células/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/fisiologia , Neoplasias/patologia , Animais , Proteínas de Ligação ao GTP/genética , Humanos , Microtúbulos/metabolismo , Biossíntese de Proteínas/fisiologia , Domínios Proteicos/fisiologia , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...