Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 375(6585): 1188-1191, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271314

RESUMO

Polyethylene production through catalytic ethylene polymerization is one of the most common processes in the chemical industry. The popular Cossee-Arlman mechanism hypothesizes that the ethylene be directly inserted into the metal-carbon bond during chain growth, which has been awaiting microscopic and spatiotemporal experimental confirmation. Here, we report an in situ visualization of ethylene polymerization by scanning tunneling microscopy on a carburized iron single-crystal surface. We observed that ethylene polymerization proceeds on a specific triangular iron site at the boundary between two carbide domains. Without an activator, an intermediate, attributed to surface-anchored ethylidene (CHCH3), serves as the chain initiator (self-initiation), which subsequently grows by ethylene insertion. Our finding provides direct experimental evidence of the ethylene polymerization pathway at the molecular level.

2.
Nat Commun ; 11(1): 750, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029729

RESUMO

Facile C-C bond formation is essential to the formation of long hydrocarbon chains in Fischer-Tropsch synthesis. Various chain growth mechanisms have been proposed previously, but spectroscopic identification of surface intermediates involved in C-C bond formation is scarce. We here show that the high CO coverage typical of Fischer-Tropsch synthesis affects the reaction pathways of C2Hx adsorbates on a Co(0001) model catalyst and promote C-C bond formation. In-situ high resolution x-ray photoelectron spectroscopy shows that a high CO coverage promotes transformation of C2Hx adsorbates into the ethylidyne form, which subsequently dimerizes to 2-butyne. The observed reaction sequence provides a mechanistic explanation for CO-induced ethylene dimerization on supported cobalt catalysts. For Fischer-Tropsch synthesis we propose that C-C bond formation on the close-packed terraces of a cobalt nanoparticle occurs via methylidyne (CH) insertion into long chain alkylidyne intermediates, the latter being stabilized by the high surface coverage under reaction conditions.

3.
Langmuir ; 33(43): 11919-11929, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29016146

RESUMO

The adsorption and decomposition of acetaldehyde and acetic acid were studied on Rh(100) to gain insight into the interaction of aldehyde and carboxyl groups of biomass-derived molecules with the surface. Temperature-programmed reaction spectroscopy (TPRS) was used to monitor gaseous reaction products, whereas Reflection absorption infrared spectroscopy (RAIRS) was used to determine the nature of surface intermediates and reaction paths. The role of adsorbate interactions in oxygenate decomposition chemistry was also investigated by varying the surface coverage. Acetaldehyde adsorbs in an η2(C, O) configuration for all coverages, where the carbonyl group binds to the surface via the C and O atoms. Decomposition occurs below room temperature (180-280 K) via C-H and C-C bond breaking, which releases CO, H, and CHx species on the surface. At low coverage, CHx dehydrogenation dominates and surface carbon is produced alongside H2 and CO. At high coverage, about 60% of the CHx hydrogenates to form methane, whereas only 40% of the CHx decomposes further to surface carbon. Acetic acid adsorbs dissociatively on the Rh(100) surface via O-H bond scission, forming a mixture of mono- and bidentate acetate. The decomposition of acetate proceeds via two different pathways: (i) deoxygenation via C-O and C-C bond scissions and (ii) decarboxylation via C-C bond scission. At low coverage, the decarboxylation pathway dominates, a process that occurs at slightly above room temperature (280-360 K) and produces CO2 and CHx, where the latter decomposes further to surface carbon and H2. At high coverage, both decarboxylation and deoxygenation occur, slightly, above room temperature (280-360 K). The resulting O adatoms produced in the deoxygenation path react with surface hydrogen or CO to form water and CO2, respectively. The CHx species dehydrogenate to surface carbon for all coverages. Our findings suggest that oxygenates with a C═O functionality and an alkyl end react on the Rh(100) surface to produce synthesis gas and small hydrocarbons whereas CO2 and synthesis gas are produced when oxygenates with a COOH functionality and an alkyl end react with the Rh(100) surface. For both cases, carbon accumulation occurs on the surface.

4.
Faraday Discuss ; 197: 101-116, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28170012

RESUMO

Monomeric forms of carbon play a central role in the synthesis of long chain hydrocarbons via the Fischer-Tropsch synthesis (FTS). We explored the chemistry of C1Hxad species on the close-packed surface of cobalt. Our findings on this simple model catalyst highlight the important role of surface hydrogen and vacant sites for product selectivity. We furthermore find that COad affects hydrogen in multiple ways. It limits the adsorption capacity for Had, lowers its adsorption energy and inhibits dissociative H2 adsorption. We discuss how these findings, extrapolated to pressures and temperatures used in applied FTS, can provide insights into the correlation between partial pressure of reactants and product selectivity. By combining the C1Hx stability differences found in the present work with literature reports of the reactivity of C1Hx species measured by steady state isotope transient kinetic analysis, we aim to shed light on the nature of the atomic carbon reservoir found in these studies.

5.
Phys Chem Chem Phys ; 19(1): 893, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27901536

RESUMO

Correction for 'Modeling the surface chemistry of biomass model compounds on oxygen-covered Rh(100)' by B. Caglar et al., Phys. Chem. Chem. Phys., 2016, 18, 23888-23903.

6.
Phys Chem Chem Phys ; 18(43): 30117-30127, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27775740

RESUMO

The adsorption and decomposition of ethanol on Rh(100) was studied as a model reaction to understand the role of C-OH functionalities in the surface chemistry of biomass-derived molecules. A combination of experimental surface science and computational techniques was used: (i) temperature programmed reaction spectroscopy (TPRS), reflection absorption infrared spectroscopy (RAIRS), work function measurements (Kelvin Probe - KP), and density functional theory (DFT). Ethanol produces ethoxy (CH3CH2O) species via O-H bond breaking upon adsorption at 100 K. Ethoxy decomposition proceeds differently depending on the surface coverage. At low coverage, the decomposition of ethoxy species occurs viaß-C-H cleavage, which leads to an oxometallacycle (OMC) intermediate. Decomposition of the OMC scissions (at 180-320 K) ultimately produces CO, H2 and surface carbon. At high coverage, along with the pathway observed in the low coverage case, a second pathway occurs around 140-200 K, which produces an acetaldehyde intermediate viaα-C-H cleavage. Further decomposition of acetaldehyde produces CH4, CO, H2 and surface carbon. However, even at high coverage this is a minor pathway, and methane selectivity is 10% at saturation coverage. The results suggests that biomass-derived oxygenates, which contain an alkyl group, react on the Rh(100) surface to produce synthesis gas (CO and H2), surface carbon and small hydrocarbons due to the high dehydrogenation and C-C bond scission activity of Rh(100).

7.
Phys Chem Chem Phys ; 18(34): 23888-903, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27523296

RESUMO

Rhodium-based catalysts are potential candidates to process biomass and serve as a representation of the class of noble metal catalysts for biomass-related processes. Biomass can be processed in aqueous media (hydrolysis and aqueous phase reforming), and in this case the surface chemistry involves hydroxyl (OH) species. In our study this was modelled by the presence of pre-adsorbed oxygen. Ethylene glycol, with a hydroxyl group on every carbon atom, serves as a model compound to understand the conversion of biomass derived molecules into desirable chemicals on catalytically active metal surfaces. Ethanol (containing one OH group) serves as a reference molecule for ethylene glycol (containing two OH groups) to understand the interaction of C-OH functionalities with a Rh(100) surface. The surface chemistry of ethylene glycol and ethanol in the presence of pre-adsorbed oxygen on a Rh(100) surface has been studied via temperature programmed reaction spectroscopy (TPRS) and reflection absorption infrared spectroscopy (RAIRS) using various coverages of O(ad) and ethylene glycol and ethanol. Pre-adsorbed oxygen alters the decomposition chemistry of both compounds, thereby affecting the product distribution. Under an oxygen-lean condition, the selectivity to produce methane from ethanol is enhanced significantly (4.5-fold with respect to that obtained on the oxygen-free surface). For ethylene glycol, oxygen-lean conditions promote the formation of formaldehyde, with 10-15% selectivity. In addition, with Oad present the fraction of molecules that decompose on the surface increases 2-fold for ethanol and 1.5-fold for ethylene glycol, due to fast O-H bond activation by pre-adsorbed oxygen. Under oxygen-rich conditions, the decomposition products are mainly oxidized to carbon dioxide and water for both molecules. In this condition, the promotion effect provided by adsorbed oxygen for the dissociative adsorption of ethanol and ethylene glycol is reduced due to the site blocking effect of oxygen.

8.
Phys Chem Chem Phys ; 7(13): 2629-34, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16189574

RESUMO

High energy resolution fast XPS combined with TPD experiments were used to study the effect of chemisorbed oxygen on the adsorption and dissociation of NH(3) on Ir(110). Below 250 K the presence of O(ad) does not influence NH(3) decomposition. Above 250 K O(ad) enhances NH(3) dissociation, which results in three times as much N(2) formation and less molecular NH(3) desorption compared to the experiments without O(ad). The effect of O(ad) can be attributed to destabilization of NH(ad) on the surface, resulting in a further dehydrogenation towards N(ad). The presence of O(ad) on the surface lowers the temperature at which the N(ad) combination reaction takes place by as much as 200 K, due to repulsive interaction between N(ad) and O(ad). NO is formed above 450 K if both N(ad) and O(ad) are present on the surface.


Assuntos
Amônia/química , Irídio/química , Oxigênio/química , Adsorção , Análise Diferencial Térmica/métodos , Óxido Nítrico/síntese química , Espectrometria por Raios X/métodos , Propriedades de Superfície , Temperatura
9.
J Chem Phys ; 122(18): 184705, 2005 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-15918745

RESUMO

The adsorption and decomposition of NH3 on Ir(110) has been studied in the temperature range from 80 K to 700 K. By using high-energy resolution x-ray photoelectron spectroscopy it is possible to distinguish chemically different surface species. At low temperature a NH3 multilayer, which desorbs at approximately 110 K, was observed. The second layer of NH3 molecules desorbs around 140 K, in a separate desorption peak. Chemisorbed NH3 desorbs in steps from the surface and several desorption peaks are observed between 200 and 400 K. A part of the NH3ad decomposes into NH(ad) between 225 and 300 K. NH(ad) decomposes into N(ad) between 400 K and 500 K and the hydrogen released in this process immediately desorbs. N2 desorption takes place between 500 and 700 K via N(ad) combination. The steady state decomposition reaction of NH3 starts at 500 K. The maximum reaction rate is observed between 540 K and 610 K. A model is presented to explain the occurrence of a maximum in the reaction rate. Hydrogenation of N(ad) below 400 K results in NH(ad). No NH2ad or NH3ad/NH3 were observed. The hydrogenation of NH(ad) only takes place above 400 K. On the basis of the experimental findings an energy scheme is presented to account for the observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...