Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 37(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29661886

RESUMO

Increasing evidence suggests that synaptic functions of the amyloid precursor protein (APP), which is key to Alzheimer pathogenesis, may be carried out by its secreted ectodomain (APPs). The specific roles of APPsα and APPsß fragments, generated by non-amyloidogenic or amyloidogenic APP processing, respectively, remain however unclear. Here, we expressed APPsα or APPsß in the adult brain of conditional double knockout mice (cDKO) lacking APP and the related APLP2. APPsα efficiently rescued deficits in spine density, synaptic plasticity (LTP and PPF), and spatial reference memory of cDKO mice. In contrast, APPsß failed to show any detectable effects on synaptic plasticity and spine density. The C-terminal 16 amino acids of APPsα (lacking in APPsß) proved sufficient to facilitate LTP in a mechanism that depends on functional nicotinic α7-nAChRs. Further, APPsα showed high-affinity, allosteric potentiation of heterologously expressed α7-nAChRs in oocytes. Collectively, we identified α7-nAChRs as a crucial physiological receptor specific for APPsα and show distinct in vivo roles for APPsα versus APPsß. This implies that reduced levels of APPsα that might occur during Alzheimer pathogenesis cannot be compensated by APPsß.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Cognição/fisiologia , Plasticidade Neuronal/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Coluna Vertebral/metabolismo , Coluna Vertebral/patologia , Transmissão Sináptica/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
2.
J Neurosci ; 36(32): 8356-71, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27511009

RESUMO

UNLABELLED: Acute cerebral ischemia and chronic neurovascular diseases share various common mechanisms with neurodegenerative diseases, such as disturbed cellular calcium and energy homeostasis and accumulation of toxic metabolites. A link between these conditions may be constituted by amyloid precursor protein (APP), which plays a pivotal role in the pathogenesis of Alzheimer's disease, but has also been associated with the response to acute hypoxia and regulation of calcium homeostasis. We therefore studied hypoxia-induced loss of function and recovery upon reoxygenation in hippocampal slices of mice lacking APP (APP(-/-)) or selectively expressing its soluble extracellular domain (APPsα-KI). Transient hypoxia disrupted electrical activity at the network and cellular level. In mice lacking APP, these impairments were significantly more severe, showing increased rise of intracellular calcium, faster loss of function, and higher incidence of spreading depression. Likewise, functional recovery upon reoxygenation was much slower and less complete than in controls. Most of these deficits were rescued by selective expression of the soluble extracellular fragment APPsα, or by pharmacological block of L-type calcium channels. We conclude that APP supports neuronal resistance toward acute hypoxia. This effect is mediated by the secreted APPsα-domain and involves L-type calcium channels. SIGNIFICANCE STATEMENT: Amyloid precursor protein (APP) is involved in the pathophysiology of Alzheimer's disease, but its normal function in the brain remains elusive. Here, we describe a neuroprotective role of the protein in acute hypoxia. Functional recovery of mouse hippocampal networks after transient reduction of oxygen supply was strongly impaired in animals lacking APP. Most protective effects are mediated by the soluble extracellular fragment APPsα and involve L-type calcium channels. Thus, APP contributes to calcium homeostasis in situations of metabolic stress. This finding may shed light on the physiological function of APP and may be important for understanding mechanisms of neurodegenerative diseases.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Canais de Cálcio Tipo L/metabolismo , Hipóxia/patologia , Rede Nervosa/fisiologia , Neurônios/metabolismo , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Potenciais Evocados/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Nifedipino/farmacologia
3.
Sci Rep ; 6: 21948, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26905287

RESUMO

Amyloid precursor protein (APP) is critically involved in the pathophysiology of Alzheimer's disease, but its physiological functions remain elusive. Importantly, APP knockout (APP-KO) mice exhibit cognitive deficits, suggesting that APP plays a role at the neuronal network level. To investigate this possibility, we recorded local field potentials (LFPs) from the posterior parietal cortex, dorsal hippocampus and lateral prefrontal cortex of freely moving APP-KO mice. Spectral analyses showed that network oscillations within the theta- and gamma-frequency bands were not different between APP-KO and wild-type mice. Surprisingly, however, while gamma amplitude coupled to theta phase in all recorded regions of wild-type animals, in APP-KO mice theta-gamma coupling was strongly diminished in recordings from the parietal cortex and hippocampus, but not in LFPs recorded from the prefrontal cortex. Thus, lack of APP reduces oscillatory coupling in LFP recordings from specific brain regions, despite not affecting the amplitude of the oscillations. Together, our findings reveal reduced cross-frequency coupling as a functional marker of APP deficiency at the network level.


Assuntos
Precursor de Proteína beta-Amiloide/deficiência , Disfunção Cognitiva/fisiopatologia , Ritmo Gama , Hipocampo/fisiopatologia , Lobo Parietal/fisiopatologia , Ritmo Teta , Precursor de Proteína beta-Amiloide/genética , Animais , Disfunção Cognitiva/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Técnicas Estereotáxicas
4.
Acta Neuropathol ; 131(2): 247-266, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26538149

RESUMO

Alzheimer's disease (AD) is characterized by synaptic failure, dendritic and axonal atrophy, neuronal death and progressive loss of cognitive functions. It is commonly assumed that these deficits arise due to ß-amyloid accumulation and plaque deposition. However, increasing evidence indicates that loss of physiological APP functions mediated predominantly by neurotrophic APPsα produced in the non-amyloidogenic α-secretase pathway may contribute to AD pathogenesis. Upregulation of APPsα production via induction of α-secretase might, however, be problematic as this may also affect substrates implicated in tumorigenesis. Here, we used a gene therapy approach to directly overexpress APPsα in the brain using AAV-mediated gene transfer and explored its potential to rescue structural, electrophysiological and behavioral deficits in APP/PS1∆E9 AD model mice. Sustained APPsα overexpression in aged mice with already preexisting pathology and amyloidosis restored synaptic plasticity and partially rescued spine density deficits. Importantly, AAV-APPsα treatment also resulted in a functional rescue of spatial reference memory in the Morris water maze. Moreover, we demonstrate a significant reduction of soluble Aß species and plaque load. In addition, APPsα induced the recruitment of microglia with a ramified morphology into the vicinity of plaques and upregulated IDE and TREM2 expression suggesting enhanced plaque clearance. Collectively, these data indicate that APPsα can mitigate synaptic and cognitive deficits, despite established pathology. Increasing APPsα may therefore be of therapeutic relevance for AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Secretases da Proteína Precursora do Amiloide/metabolismo , Encéfalo/fisiopatologia , Terapia Genética , Sinapses/fisiologia , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/patologia , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Transgênicos , Microglia/patologia , Microglia/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Placa Amiloide/patologia , Placa Amiloide/fisiopatologia , Presenilina-1/genética , Presenilina-1/metabolismo , Técnicas de Cultura de Tecidos
5.
J Neurosci ; 35(49): 16018-33, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26658856

RESUMO

The amyloid precursor protein family (APP/APLPs) has essential roles for neuromuscular synapse development and for the formation and plasticity of synapses within the CNS. Despite this, it has remained unclear whether APP mediates its functions primarily as a cell surface adhesion and signaling molecule or via its numerous proteolytic cleavage products. To address these questions, we followed a genetic approach and used APPΔCT15 knockin mice lacking the last 15 amino acids of APP, including the highly conserved YENPTY protein interaction motif. To circumvent functional compensation by the closely related APLP2, these mice were bred to an APLP2-KO background to generate APPΔCT15-DM double mutants. These APPΔCT15-DM mice were partially viable and displayed defects in neuromuscular synapse morphology and function with impairments in the ability to sustain transmitter release that resulted in muscular weakness. In the CNS, we demonstrate pronounced synaptic deficits including impairments in LTP that were associated with deficits in spatial learning and memory. Thus, the APP-CT15 domain provides essential physiological functions, likely via recruitment of specific interactors. Together with the well-established role of APPsα for synaptic plasticity, this shows that multiple domains of APP, including the conserved C-terminus, mediate signals required for normal PNS and CNS physiology. In addition, we demonstrate that lack of the APP-CT15 domain strongly impairs Aß generation in vivo, establishing the APP C-terminus as a target for Aß-lowering strategies. SIGNIFICANCE STATEMENT: Synaptic dysfunction and cognitive decline are early hallmark features of Alzheimer's disease. Thus, it is essential to elucidate the in vivo function(s) of APP at the synapse. At present, it is unknown whether APP family proteins function as cell surface receptors, or mainly via shedding of their secreted ectodomains, such as neurotrophic APPsα. Here, to dissect APP functional domains, we used APP mutant mice lacking the last 15 amino acids that were crossed onto an APLP2-KO background. These APPΔCT15-DM mice showed defects in neuromuscular morphology and function. Synaptic deficits in the CNS included impairments of synaptic plasticity, spatial learning, and memory. Collectively, this indicates that multiple APP domains, including the C-terminus, are required for normal nervous system function.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/patologia , Mutação/genética , Plasticidade Neuronal/fisiologia , Sinapses/patologia , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Comportamento Exploratório/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Força Muscular/fisiologia , Condução Nervosa/genética , Condução Nervosa/fisiologia , Plasticidade Neuronal/genética , Nervo Frênico/fisiopatologia , Estrutura Terciária de Proteína/genética
6.
Acta Neuropathol ; 129(1): 21-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432317

RESUMO

The key role of APP in the pathogenesis of Alzheimer disease is well established. However, postnatal lethality of double knockout mice has so far precluded the analysis of the physiological functions of APP and the APLPs in the brain. Previously, APP family proteins have been implicated in synaptic adhesion, and analysis of the neuromuscular junction of constitutive APP/APLP2 mutant mice showed deficits in synaptic morphology and neuromuscular transmission. Here, we generated animals with a conditional APP/APLP2 double knockout (cDKO) in excitatory forebrain neurons using NexCre mice. Electrophysiological recordings of adult NexCre cDKOs indicated a strong synaptic phenotype with pronounced deficits in the induction and maintenance of hippocampal LTP and impairments in paired pulse facilitation, indicating a possible presynaptic deficit. These deficits were also reflected in impairments in nesting behavior and hippocampus-dependent learning and memory tasks, including deficits in Morris water maze and radial maze performance. Moreover, while no gross alterations of brain morphology were detectable in NexCre cDKO mice, quantitative analysis of adult hippocampal CA1 neurons revealed prominent reductions in total neurite length, dendritic branching, reduced spine density and reduced spine head volume. Strikingly, the impairment of LTP could be selectively rescued by acute application of exogenous recombinant APPsα, but not APPsß, indicating a crucial role for APPsα to support synaptic plasticity of mature hippocampal synapses on a rapid time scale. Collectively, our analysis reveals an essential role of APP family proteins in excitatory principal neurons for mediating normal dendritic architecture, spine density and morphology, synaptic plasticity and cognition.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/fisiopatologia , Plasticidade Neuronal/fisiologia , Fragmentos de Peptídeos/metabolismo , Sinapses/fisiologia , Precursor de Proteína beta-Amiloide/genética , Animais , Dendritos/patologia , Dendritos/fisiologia , Feminino , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Knockout , Atividade Motora/fisiologia , Neuritos/patologia , Neuritos/fisiologia , Fragmentos de Peptídeos/genética , Proteínas Recombinantes/metabolismo , Memória Espacial/fisiologia , Sinapses/patologia
8.
Mol Cell Neurosci ; 61: 201-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24998676

RESUMO

The analysis of mouse models indicated that APP and the related APLPs are important for synapse formation and function. The synaptic role of APP is, however, complex due to partially overlapping functions within the gene family. APP/APLPs are proteolytically cleaved and have both adhesive and signaling properties. Mice lacking individual APP family members are viable, whereas APP/APLP2 and APLP1/APLP2 double knockout (DKO) mice die shortly after birth. Here, we analyzed the morphology of the neuromuscular junction (NMJ) of lethal APLP1/APLP2-DKO mice in comparison to lethal APP/APLP2-DKO mutants and viable single KO mice. We report that, surprisingly, the NMJ phenotype of APLP1/APLP2-DKO mice shows striking differences as compared to APP/APLP2-DKO mice. Unexpectedly, APLP1/APLP2-DKO mice exhibit normal endplate patterning and lack presynaptic nerve terminal sprouting. However, at the level of individual synapses we show that APLP1/APLP2-DKO mice exhibit reduced size of pre- and postsynaptic compartments and reduced colocalization. As APP/APLP2-DKO and APLP1/APLP2-DKO mice show similar penetrance of early postnatal lethality, this suggests that deficits at the level of individual synapses due to impaired synaptic apposition and/or deficits in transmitter release may cause lethality. Using an in vitro cell-adhesion assay, we observed that APP trans-dimerization is considerably less efficient than APLP2 trans-interaction. Thus, differences between APP/APLP2 and APP/APLP1 NMJ formation may be in part explained by differences in APP/APLP2 trans-dimerization properties. Collectively, our study further highlights the distinct and essential role of APLP2 at NMJ synapses that cannot be compensated by APP.


Assuntos
Precursor de Proteína beta-Amiloide/deficiência , Regulação da Expressão Gênica/genética , Junção Neuromuscular/citologia , Junção Neuromuscular/fisiologia , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Peso Corporal/genética , Distribuição de Qui-Quadrado , Diafragma/citologia , Diafragma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Fragmentos de Peptídeos , Receptores Colinérgicos/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Sinapsinas/metabolismo
9.
Acta Neuropathol Commun ; 2: 36, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24684730

RESUMO

Synaptic dysfunction and synapse loss are key features of Alzheimer's pathogenesis. Previously, we showed an essential function of APP and APLP2 for synaptic plasticity, learning and memory. Here, we used organotypic hippocampal cultures to investigate the specific role(s) of APP family members and their fragments for dendritic complexity and spine formation of principal neurons within the hippocampus. Whereas CA1 neurons from APLP1-KO or APLP2-KO mice showed normal neuronal morphology and spine density, APP-KO mice revealed a highly reduced dendritic complexity in mid-apical dendrites. Despite unaltered morphology of APLP2-KO neurons, combined APP/APLP2-DKO mutants showed an additional branching defect in proximal apical dendrites, indicating redundancy and a combined function of APP and APLP2 for dendritic architecture. Remarkably, APP-KO neurons showed a pronounced decrease in spine density and reductions in the number of mushroom spines. No further decrease in spine density, however, was detectable in APP/APLP2-DKO mice. Mechanistically, using APPsα-KI mice lacking transmembrane APP and expressing solely the secreted APPsα fragment we demonstrate that APPsα expression alone is sufficient to prevent the defects in spine density observed in APP-KO mice. Collectively, these studies reveal a combined role of APP and APLP2 for dendritic architecture and a unique function of secreted APPs for spine density.


Assuntos
Precursor de Proteína beta-Amiloide/deficiência , Espinhas Dendríticas/genética , Neurônios/ultraestrutura , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Espinhas Dendríticas/metabolismo , Hipocampo/citologia , Técnicas In Vitro , Camundongos , Camundongos Knockout , Mutação/genética , Técnicas de Cultura de Órgãos , Transfecção
10.
PLoS One ; 8(4): e61198, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23585881

RESUMO

The physiological function of amyloid precursor protein (APP) and its two homologues APP-like protein 1 (APLP1) and 2 (APLP2) is largely unknown. Previous work suggests that lack of APP or APLP2 impairs synaptic plasticity and spatial learning. There is, however, almost no data on the role of APP or APLP at the network level which forms a critical interface between cellular functions and behavior. We have therefore investigated memory-related synaptic and network functions in hippocampal slices from three lines of transgenic mice: APPsα-KI (mice expressing extracellular fragment of APP, corresponding to the secreted APPsα ectodomain), APLP2-KO, and combined APPsα-KI/APLP2-KO (APPsα-DM for "double mutants"). We analyzed two prominent patterns of network activity, gamma oscillations and sharp-wave ripple complexes (SPW-R). Both patterns were generally preserved in all strains. We find, however, a significantly reduced frequency of gamma oscillations in CA3 of APLP2-KO mice in comparison to APPsα-KI and WT mice. Network activity, basic synaptic transmission and short-term plasticity were unaltered in the combined mutants (APPsα-DM) which showed, however, reduced long-term potentiation (LTP). Together, our data indicate that APLP2 and the intracellular domain of APP are not essential for coherent activity patterns in the hippocampus, but have subtle effects on synaptic plasticity and fine-tuning of network oscillations.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Precursor de Proteína beta-Amiloide/deficiência , Animais , Hipocampo/anatomia & histologia , Camundongos , Camundongos Transgênicos , Estrutura Terciária de Proteína , Potenciais Sinápticos/fisiologia
11.
Exp Brain Res ; 217(3-4): 423-34, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21931985

RESUMO

The amyloid precursor protein (APP) plays a key role in the pathogenesis of Alzheimer's disease (AD), as proteolytical cleavage of APP gives rise to the ß-amyloid peptide which is deposited in the brains of Alzheimer patients. During the past years, intense research efforts have been directed at elucidating the physiological function(s) of APP and the question of whether a perturbation of these functions contributes to AD pathogenesis. Indeed, a growing body of evidence has accumulated supporting a role of APP and the two closely related homologues APLP1 and APLP2 in various aspects of nervous system development and function, in particular, for synapse formation and function. This review summarizes recent insights into the in vivo role of the APP gene family from mice lacking individual or combinations of APP family members, with particular emphasis on recently generated knockin mice to examine the in vivo relevance of distinct functional domains.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Modelos Animais de Doenças , Modelos Moleculares , Modelos Neurológicos , Família Multigênica/fisiologia , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Humanos , Camundongos , Dados de Sequência Molecular
12.
EMBO J ; 30(11): 2266-80, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21522131

RESUMO

Despite its key role in Alzheimer pathogenesis, the physiological function(s) of the amyloid precursor protein (APP) and its proteolytic fragments are still poorly understood. Previously, we generated APPsα knock-in (KI) mice expressing solely the secreted ectodomain APPsα. Here, we generated double mutants (APPsα-DM) by crossing APPsα-KI mice onto an APLP2-deficient background and show that APPsα rescues the postnatal lethality of the majority of APP/APLP2 double knockout mice. Surviving APPsα-DM mice exhibited impaired neuromuscular transmission, with reductions in quantal content, readily releasable pool, and ability to sustain vesicle release that resulted in muscular weakness. We show that these defects may be due to loss of an APP/Mint2/Munc18 complex. Moreover, APPsα-DM muscle showed fragmented post-synaptic specializations, suggesting impaired postnatal synaptic maturation and/or maintenance. Despite normal CNS morphology and unaltered basal synaptic transmission, young APPsα-DM mice already showed pronounced hippocampal dysfunction, impaired spatial learning and a deficit in LTP that could be rescued by GABA(A) receptor inhibition. Collectively, our data show that APLP2 and APP are synergistically required to mediate neuromuscular transmission, spatial learning and synaptic plasticity.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/deficiência , Animais , Cruzamentos Genéticos , Aprendizagem , Camundongos , Camundongos Knockout , Junção Neuromuscular/fisiologia , Plasticidade Neuronal , Transmissão Sináptica
13.
Eur J Neurosci ; 28(5): 871-82, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18717733

RESUMO

It is known that activity modulates neuronal differentiation in the adult brain but the signalling mechanisms underlying this process remain to be identified. We show here that activity requires soluble amyloid precursor protein (sAPP) to enhance neurite outgrowth of young neurons differentiating from neural stem cells. Inhibition of sAPP secretion and anti-APP antibodies both abolished the effect of depolarization on neurite outgrowth, whereas exogenous sAPPalpha, similar to depolarization, induced neurite elongation. Depolarization and sAPPalpha both required active N-methyl-D-aspartic acid receptor (NMDAR) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) recruitment to induce neurite outgrowth. However, depolarization and sAPPalpha played different roles in modulating this signalling cascade. Depolarization induced ERK phosphorylation with fast kinetics via activation of NMDAR. By contrast, acute application of sAPPalpha did not lead to ERK activation. However, continuous generation of sAPPalpha was necessary for depolarization-induced ERK phosphorylation, indicating that sAPPalpha promotes MAPK/ERK recruitment by an indirect mechanism. In addition, we found that blockade of NMDAR down-regulated APP expression, whereas depolarization increased sAPPalpha, suggesting that activity may also act upstream of sAPP signalling by regulating the amount of cellular APP and extracellular sAPPalpha. Finally, we show that soluble amyloid precursor-like protein 2 (sAPLP2), but not sAPLP1, is functionally redundant to sAPP in promoting neurite outgrowth and that soluble members of the APP family require membrane-bound APP to enhance neurite outgrowth. In summary, these experiments indicate a novel role of APP family members in activity-dependent neuronal differentiation.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neuritos/enzimologia , Neurogênese/fisiologia , Células-Tronco/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Encéfalo/citologia , Encéfalo/embriologia , Células Cultivadas , Citoproteção/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuritos/ultraestrutura , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Esferoides Celulares , Células-Tronco/citologia
14.
J Neurosci ; 27(29): 7817-26, 2007 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-17634375

RESUMO

It is well established that the proteolytic processing of the beta-amyloid precursor protein (APP) generates beta-amyloid (Abeta), which plays a central role in the pathogenesis of Alzheimer's disease (AD). In contrast, the physiological role of APP and of its numerous proteolytic fragments and the question of whether a loss of these functions contributes to AD are still unknown. To address this question, we replaced the endogenous APP locus by gene-targeted alleles and generated two lines of knock-in mice that exclusively express APP deletion variants corresponding either to the secreted APP ectodomain (APPs alpha) or to a C-terminal (CT) truncation lacking the YENPTY interaction motif (APPdeltaCT15). Interestingly, the deltaCT15 deletion resulted in reduced turnover of holoAPP, increased cell surface expression, and strongly reduced Abeta levels in brain, likely because of reduced processing in the endocytic pathway. Most importantly, we demonstrate that in both APP knock-in lines the expression of APP N-terminal domains either grossly attenuated or completely rescued the prominent deficits of APP knock-out mice, such as reductions in brain and body weight, grip strength deficits, alterations in circadian locomotor activity, exploratory activity, and the impairment in spatial learning and long-term potentiation. Together, our data suggest that the APP C terminus is dispensable and that APPs alpha is sufficient to mediate the physiological functions of APP assessed by these tests.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/deficiência , Comportamento Animal/fisiologia , Encéfalo/patologia , Potenciação de Longa Duração/fisiologia , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Peptídeos beta-Amiloides/metabolismo , Análise de Variância , Animais , Peso Corporal/genética , Encéfalo/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/genética , Força da Mão/fisiologia , Técnicas In Vitro , Potenciação de Longa Duração/genética , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Deleção de Sequência/fisiologia , Comportamento Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...