Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(29): 7628-7632, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855470

RESUMO

For the optical generation of ultrastable microwave signals for fountain clocks, we developed a setup based on a cavity stabilized laser and a commercial frequency comb. The robust system, in operation since 2020, is locked to a 100 MHz output frequency of a hydrogen maser and provides an ultrastable 9.6 GHz signal for the interrogation of atoms in two cesium fountain clocks, acting as primary frequency standards. Measurements reveal that the system provides a phase noise level that enables quantum projection noise limited fountain frequency instabilities at the low 10-14(τ/s)-1/2 level. At the same time, it offers largely maintenance-free operation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28103194

RESUMO

We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary cesium fountain clocks. Because of its superior phase noise properties, this scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the frequency instability limitations of fountain clocks given by the previously utilized quartz-oscillator-based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of several weeks. The utilization of the twofold stabilization scheme on the one hand ensures the referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables fountain frequency instabilities at the 2.5 ×10-14 (τ/s)-1/2 level that are quantum projection noise limited.

3.
Artigo em Inglês | MEDLINE | ID: mdl-26761607

RESUMO

Coherent manipulation of atomic states is a key concept in high-precision spectroscopy and used in atomic fountain clocks and a number of optical frequency standards. Operation of these standards can involve a number of cyclic switching processes, which may induce cycle-synchronous phase excursions of the interrogation signal and thus lead to shifts in the output of the frequency standard. We have built a field-programmable gate array (FPGA)-based phase analyzer to investigate these effects and conducted measurements on two kinds of frequency standards. For the caesium fountains PTB-CSF1 and PTB-CSF2, we were able to exclude phase variations of the microwave source at the level of a few microradians, corresponding to relative frequency shifts of less than [Formula: see text]. In the optical domain, we investigated phase variations in PTB's Yb (+) optical frequency standard and made detailed measurements of acousto-optic modulator (AOM) chirps and their scaling with duty cycle and driving power. We ascertained that cycle-synchronous as well as long-term phase excursion do not cause frequency shifts larger than [Formula: see text].

4.
Phys Rev Lett ; 110(23): 230801, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25167479

RESUMO

We have measured the frequency of the extremely narrow 1S-2S two-photon transition in atomic hydrogen using a remote cesium fountain clock with the help of a 920 km stabilized optical fiber. With an improved detection method we obtain f(1S-2S)=2466 061 413 187 018 (11) Hz with a relative uncertainty of 4.5×10(-15), confirming our previous measurement obtained with a local cesium clock [C. G. Parthey et al., Phys. Rev. Lett. 107, 203001 (2011)]. Combining these results with older measurements, we constrain the linear combinations of Lorentz boost symmetry violation parameters c((TX))=(3.1±1.9)×10(-11) and 0.92c((TY))+0.40c((TZ))=(2.6±5.3)×10(-11) in the standard model extension framework [D. Colladay, V. A. Kostelecký, Phys. Rev. D. 58, 116002 (1998)].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...