Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 11(4): 732-40, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25482654

RESUMO

Most macroscopic machines rely on wheels and gears. Yet, rigid gears are entirely impractical on the nano-scale. Here we propose a more useful method to couple any rotary engine to any other mechanical elements on the nano- and micro-scale. We argue that a rotary molecular motor attached to an entangled polymer energy storage unit, which together form what we call the "tanglotron" device, is a viable concept that can be experimentally implemented. We derive the torque-entanglement relationship for a tanglotron (its "equation of state") and show that it can be understood by simple statistical mechanics arguments. We find that a typical entanglement at low packing density costs around 6kT. In the high entanglement regime, the free energy diverges logarithmically close to a maximal geometric packing density. We outline several promising applications of the tanglotron idea and conclude that the transmission, storage and back-conversion of topological entanglement energy are not only physically feasible but also practical for a number of reasons.

2.
Phys Rev Lett ; 109(17): 178301, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23215226

RESUMO

Using positional data from video microscopy of a two-dimensional colloidal system and from simulations of hard disks, we determine the wave-vector-dependent elastic dispersion relations in glass. The emergence of rigidity based on the existence of a well defined displacement field in amorphous solids is demonstrated. Continuum elastic theory is recovered in the limit of long wavelengths which provides the glass elastic shear and bulk modulus as a function of temperature. The onset of a finite static shear modulus upon cooling marks the fluid-glass transition in an intuitive and unique way.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 1): 041503, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21599165

RESUMO

We analyze the glassy dynamics of binary mixtures of hard disks in two dimensions. Predictions of the mode-coupling theory (MCT) are tested with extensive Brownian dynamics simulations. Measuring the collective particle density correlation functions in the vicinity of the glass transition, we verify four predicted mixing effects. For instance, for large size disparities, adding a small amount of small particles at a fixed packing fraction leads to a speedup in the long-time dynamics, while for small size disparities it leads to a slowing-down. Qualitative features of the nonergodicity parameters and the ß relaxation, which both depend in a nontrivial way on the mixing ratio, are found in the simulated correlators. Studying one system in detail, we are able to determine its ideal MCT glass transition point as φ(c)=0.7948 and test MCT predictions quantitatively.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(6 Pt 1): 061506, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20866424

RESUMO

A relation between equilibrium, steady state, and waiting-time-dependent dynamical two-time correlation functions in dense glass-forming liquids subject to homogeneous steady shear flow is discussed. The systems under study show pronounced shear thinning, i.e., a significant speedup in their steady-state slow relaxation as compared to equilibrium. An approximate relation that recovers the exact limit for small waiting times is derived following the integration through transients (ITT) approach for the nonequilibrium Smoluchowski dynamics, and is exemplified within a schematic model in the framework of the mode-coupling theory of the glass transition (MCT). Computer simulation results for the tagged-particle density correlation functions corresponding to wave vectors in the shear-gradient directions from both event-driven stochastic dynamics of a two-dimensional hard-disk system and from previously published Newtonian-dynamics simulations of a three-dimensional soft-sphere mixture are analyzed and compared with the predictions of the ITT-based approximation. Good qualitative and semiquantitative agreement is found. Furthermore, for short waiting times, the theoretical description of the waiting time dependence shows excellent quantitative agreement to the simulations. This confirms the accuracy of the central approximation used earlier to derive fluctuation dissipation ratios [M. Krüger and M. Fuchs, Phys. Rev. Lett. 102, 135701 (2009)]. For intermediate waiting times, the correlation functions decay faster at long times than the stationary ones. This behavior is predicted by our theory and observed in simulations.

5.
Philos Trans A Math Phys Eng Sci ; 367(1909): 5033-50, 2009 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-19933126

RESUMO

Brownian dynamics simulations of bidisperse hard discs moving in two dimensions in a given steady and homogeneous shear flow are presented close to and above the glass transition density. The stationary structure functions and stresses of shear-melted glass are compared quantitatively to parameter-free numerical calculations of monodisperse hard discs using mode coupling theory within the integration through transients framework. Theory qualitatively explains the properties of the yielding glass but quantitatively overestimates the shear-driven stresses and structural anisotropies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...