Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1201973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600784

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) remains a leading cause of economic loss in pig farming worldwide. Existing commercial vaccines, all based on modified live or inactivated PRRSV, fail to provide effective immunity against the highly diverse circulating strains of both PRRSV-1 and PRRSV-2. Therefore, there is an urgent need to develop more effective and broadly active PRRSV vaccines. In the absence of neutralizing antibodies, T cells are thought to play a central role in controlling PRRSV infection. Herpesvirus-based vectors are novel vaccine platforms capable of inducing high levels of T cells against encoded heterologous antigens. Therefore, the aim of this study was to assess the immunogenicity and efficacy of an attenuated herpesvirus-based vector (bovine herpesvirus-4; BoHV-4) expressing a fusion protein comprising two well-characterized PRRSV-1 T-cell antigens (M and NSP5). Prime-boost immunization of pigs with BoHV-4 expressing the M and NSP5 fusion protein (vector designated BoHV-4-M-NSP5) induced strong IFN-γ responses, as assessed by ELISpot assays of peripheral blood mononuclear cells (PBMC) stimulated with a pool of peptides representing PRRSV-1 M and NSP5. The responses were closely mirrored by spontaneous IFN-γ release from unstimulated cells, albeit at lower levels. A lower frequency of M and NSP5 specific IFN-γ responding cells was induced following a single dose of BoHV-4-M-NSP5 vector. Restimulation using M and NSP5 peptides from PRRSV-2 demonstrated a high level of cross-reactivity. Vaccination with BoHV-4-M-NSP5 did not affect viral loads in either the blood or lungs following challenge with the two heterologous PRRSV-1 strains. However, the BoHV-4-M-NSP5 prime-boost vaccination showed a marked trend toward reduced lung pathology following PRRSV-1 challenge. The limited effect of T cells on PRRSV-1 viral load was further examined by analyzing local and circulating T-cell responses using intracellular cytokine staining and proliferation assays. The results from this study suggest that vaccine-primed T-cell responses may have helped in the control of PRRSV-1 associated tissue damage, but had a minimal, if any, effect on controlling PRRSV-1 viral loads. Together, these results indicate that future efforts to develop effective PRRSV vaccines should focus on achieving a balanced T-cell and antibody response.


Assuntos
Vacinas contra Herpesvirus , Imunogenicidade da Vacina , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas da Matriz Viral , Proteínas não Estruturais Virais , Vacinas contra Herpesvirus/imunologia , Vacinas Atenuadas/imunologia , Linfócitos T/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vetores Genéticos , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Animais , Suínos , Proteínas da Matriz Viral/imunologia
2.
Vaccines (Basel) ; 11(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37243109

RESUMO

Streptococcus suis (S. suis) is a bacterial pathogen of pigs that has a major animal health and economic impact on the pig industry. Bovine herpesvirus-4 (BoHV-4) is a new virus-based vaccine vector that has been used for the immunogenic delivery of antigens from a variety of pathogens. In the present study, two recombinant BoHV-4-based vectors were evaluated for their ability to induce immunity and protection against S. suis in a rabbit model. The GMD protein is a fusion protein consisting of multiple dominant B-cell epitopes ((B-cell dominant epitopes of GAPDH, MRP, and DLDH antigens) (BoHV-4/GMD)) and the second suilysin (SLY) (BoHV-4/SLY) from S. suis serotype 2 (SS2). Both GMD and SLY delivered by the BoHV-4 vectors were recognized by sera from SS2-infected rabbits. The vaccination of rabbits with the BoHV-4 vectors induced antibodies against SS2, as well as against additional S. suis serotypes, SS7 and SS9. However, sera from BoHV-4/GMD-vaccinated animals promoted a significant level of phagocytic activity by pulmonary alveolar macrophages (PAMs) against SS2, SS7, and SS9. In contrast, sera from rabbits immunized with BoHV-4/SLY induced PAM phagocytic activity against only SS2. In addition, BoHV-4 vaccines differed in the associated level of protection against lethal SS2 challenge, which ranged from high (71.4%) to low (12.5%) for BoHV-4/GMD and BoHV-4/SLY, respectively. These data suggest BoHV-4/GMD as a promising vaccine candidate against S. suis disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...