Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Soil Sci ; 72(2): 782-792, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33776539

RESUMO

Plant roots release various organic materials that may modify soil structure and affect heat and mass transfer processes. The objective of this study was to determine the effects of a synthetic root exudate (SRE) on penetrometer resistance (PR), thermal conductivity (λ), hydraulic conductivity (k) and evaporation of water in a sandy soil. Soil samples, mixed with either distilled water or the SRE, were packed into columns at a designated bulk density and water content, and incubated for 7 days at 18°C. Soil PR, λ, k and evaporation rate were monitored during drying processes. Compared with those incubated with water, samples incubated with SRE had visible hyphae, greater PR (0.7-5.5 MPa in the water content range of 0.11 to 0.22 m3 m-3) and λ (0.2-0.7 W m-1 K-1 from 0.05 to 0.22 m3 m-3), and increased k in the wet region but decreased k in the dry region. SRE treatment also reduced the overall soil water evaporation rate and cumulative water loss. Analysis of X-ray computed tomography (CT) scanning showed that the SRE-treated samples had a greater proportion of small pores (<60 µm). These changes were attributed mainly to SRE-stimulated microbial activities. HIGHLIGHTS: The effects of incubating a sandy soil with a synthetic root exudate (SRE) on soil physical properties and evaporation are examined.SRE incubation increased the fraction of small pores.SRE incubation increased soil penetrometer resistance and thermal conductivity.Soil hydraulic conductivity was increased in the wet region but was reduced in the dry region.SRE incubation reduced the overall evaporation rate and cumulative water loss.

2.
Funct Plant Biol ; 35(11): 1163-1171, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688863

RESUMO

Deep rooting can be inhibited by strong layers, although there is evidence for species and cultivar (cv.) differences in their penetration ability. Here, the availability of near-isogenic lines (NILs) in rice (Oryza sativa L.) was exploited to test the hypothesis that increased root diameter is associated with greater root bending stiffness, which leads to greater root penetration of strong layers. Wax/petrolatum discs (80% strong wax) were used as the strong layer, so that strength can be manipulated independently of water status. It was found that good root penetration was consistently associated with greater root diameter and bending stiffness, whether comparisons were made between cvs or between NILs. With NILs, this effect was seen with 'research' lines bred from recombinant inbred lines of a cross between cvs Bala and Azucena and also in improved lines developed from cv. Kalinga III by introgression of parts of the genome from Azucena. Much of the bending behaviour of roots could be explained by treating them as a simple cylinder of material. In both wax disc and sand culture systems, roots that had encountered a strong layer had lower bending stiffness than roots that had not encountered a strong layer which is a novel result and not previously reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...