Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830639

RESUMO

Dystocia, or obstructed labor, is a well-documented phenomenon in various captive vertebrates, including fish. However, despite the documentation of dystocia in several viviparous (live-bearing) Chondrichthyan species (i.e., sharks, rays, skates, and chimaeras), there are no reports to date of dystocia in any oviparous (egg-laying) species. Here we present a case of a captive female epaulette shark (Hemiscyllium ocellatum) that demonstrated symptoms of dystocia in a research-related captive breeding programme. This communication serves as documentation that dystocia can occur in oviparous Chondrichthyans, and this information can help inform researchers and veterinary practitioners for improved care.

2.
Ecol Evol ; 13(8): e10307, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37565029

RESUMO

Rising ocean temperatures are threatening marine species and populations worldwide, and ectothermic taxa are particularly vulnerable. Echinoderms are an ecologically important phylum of marine ectotherms and shifts in their population dynamics can have profound impacts on the marine environment. The effects of warming on echinoderms are highly variable across controlled laboratory-based studies. Accordingly, synthesis of these studies will facilitate the better understanding of broad patterns in responses of echinoderms to ocean warming. Herein, a meta-analysis incorporating the results of 85 studies (710 individual responses) is presented, exploring the effects of warming on various performance predictors. The mean responses of echinoderms to all magnitudes of warming were compared across multiple biological responses, ontogenetic life stages, taxonomic classes, and regions, facilitated by multivariate linear mixed effects models. Further models were conducted, which only incorporated responses to warming greater than the projected end-of-century mean annual temperatures at the collection sites. This meta-analysis provides evidence that ocean warming will generally accelerate metabolic rate (+32%) and reduce survival (-35%) in echinoderms, and echinoderms from subtropical (-9%) and tropical (-8%) regions will be the most vulnerable. The relatively high vulnerability of echinoderm larvae to warming (-20%) indicates that this life stage may be a significant developmental bottleneck in the near-future, likely reducing successful recruitment into populations. Furthermore, asteroids appear to be the class of echinoderms that are most negatively affected by elevated temperature (-30%). When considering only responses to magnitudes of warming representative of end-of-century climate change projections, the negative impacts on asteroids, tropical species and juveniles were exacerbated (-51%, -34% and -40% respectively). The results of these analyses enable better predictions of how keystone and invasive echinoderm species may perform in a warmer ocean, and the possible consequences for populations, communities and ecosystems.

3.
J Fish Biol ; 103(2): 235-246, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37129570

RESUMO

Body condition is an important proxy for the overall health and energetic status of fishes. The classically used Fulton's condition factor requires length and mass measurements, but mass can be difficult to obtain in large species. Girth measurements can replace mass for wild pelagic sharks. However, girth-calculated condition has not been validated against Fulton's condition factor intraspecifically, across ontogeny or reproduction, or in a controlled setting. We used the epaulette shark (Hemiscyllium ocellatum), because they are amenable to captive reproduction, to track fine-scale body condition changes across life stages, oviparous reproduction and between condition indices. We measured four girths, total length and mass of 16 captive epaulette sharks across 1 year and tracked female reproduction daily. We also collected length and mass data from an additional 72 wild-caught sharks and 155 sharks from five previous studies and two public aquaria to examine the relationship between length and mass for this species. Even though data were derived from a variety of sources, a predictable length-mass relationship (R2 = 0.990) was achievable, indicating that combining data from a variety of sources could help overcome knowledge gaps regarding basic life history characteristics. We also found that condition factor decreased during early life stages, then increased again into adulthood, with predictable changes across the female reproductive cycle. Finally, we determined that both Fulton's and girth condition analyses were comparable. Outcomes from this study uniquely provide body condition changes across the complete life history, including fine-scale female reproductive stages, and validate the use of girths as a nonlethal whole-organism energetic assessment for fishes.


Assuntos
Características de História de Vida , Tubarões , Feminino , Animais , Reprodução
4.
Conserv Physiol ; 10(1): coac074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583221

RESUMO

Owing to climate change, most notably the increasing frequency of marine heatwaves and long-term ocean warming, better elucidating the upper thermal limits of marine fishes is important for predicting the future of species and populations. The critical thermal maximum (CTmax), or the highest temperature a species can tolerate, is a physiological metric that is used to establish upper thermal limits. Among marine organisms, this metric is commonly assessed in bony fishes but less so in other taxonomic groups, such as elasmobranchs (subclass of sharks, rays and skates), where only thermal acclimation effects on CTmax have been assessed. Herein, we tested whether three life history stages, sex and body size affected CTmax in a tropical elasmobranch, the epaulette shark (Hemiscyllium ocellatum), collected from the reef flats surrounding Heron Island, Australia. Overall, we found no difference in CTmax between life history stages, sexes or across a range of body sizes. Findings from this research suggest that the energetically costly processes (i.e. growth, maturation and reproduction) associated with the life history stages occupying these tropical reef flats do not change overall acute thermal tolerance. However, it is important to note that neither embryos developing in ovo, neonates, nor females actively encapsulating egg cases were observed in or collected from the reef flats. Overall, our findings provide the first evidence in an elasmobranch that upper thermal tolerance is not impacted by life history stage or size. This information will help to improve our understanding of how anthropogenic climate change may (or may not) disproportionally affect particular life stages and, as such, where additional conservation and management actions may be required.

5.
J Biol Rhythms ; 37(5): 484-497, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35822624

RESUMO

Biological rhythms that are mediated by exogenous factors, such as light and temperature, drive the physiology of organisms and affect processes ranging from cellular to population levels. For elasmobranchs (i.e. sharks, rays, and skates), studies documenting diel activity and movement patterns indicate that many species are crepuscular or nocturnal in nature. However, few studies have investigated the rhythmicity of elasmobranch physiology to understand the mechanisms underpinning these distinct patterns. Here, we assess diel patterns of metabolic rates in a small meso-predator, the epaulette shark (Hemiscyllium ocellatum), across ecologically relevant temperatures and upon acutely removing photoperiod cues. This species possibly demonstrates behavioral sleep during daytime hours, which is supported herein by low metabolic rates during the day and a 1.7-fold increase in metabolic rates at night. From spring to summer seasons, where average average water temperature temperatures for this species range 24.5 to 28.5 °C, time of day, and not temperature, had the strongest influence on metabolic rate. These results indicate that this species, and perhaps other similar species from tropical and coastal environments, may have physiological mechanisms in place to maintain metabolic rate on a seasonal time scale regardless of temperature fluctuations that are relevant to their native habitats.


Assuntos
Tubarões , Animais , Ritmo Circadiano , Fotoperíodo , Estações do Ano , Tubarões/fisiologia , Temperatura
6.
Sci Rep ; 11(1): 454, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436769

RESUMO

Climate change is affecting thermal regimes globally, and organisms relying on their environment to regulate biological processes face unknown consequences. In ectotherms, temperature affects development rates, body condition, and performance. Embryonic stages may be the most vulnerable life history stages, especially for oviparous species already living at the warm edge of their distribution, as embryos cannot relocate during this developmental window. We reared 27 epaulette shark (Hemiscyllium ocellatum) embryos under average summer conditions (27 °C) or temperatures predicted for the middle and end of the twenty-first century with climate change (i.e., 29 and 31 °C) and tracked growth, development, and metabolic costs both in ovo and upon hatch. Rearing sharks at 31 °C impacted embryonic growth, yolk consumption, and metabolic rates. Upon hatch, 31 °C-reared sharks weighed significantly less than their 27 °C-reared counterparts and exhibited reduced metabolic performance. Many important growth and development traits in this species may peak after 27 °C and start to become negatively impacted nearing 31 °C. We hypothesize that 31 °C approximates the pejus temperature (i.e., temperatures at which performance of a trait begin to decline) for this species, which is alarming, given that this temperature range is well within ocean warming scenarios predicted for this species' distribution over the next century.


Assuntos
Tubarões/crescimento & desenvolvimento , Tubarões/metabolismo , Adaptação Fisiológica , Animais , Mudança Climática , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/fisiologia , Humanos , Recém-Nascido/crescimento & desenvolvimento , Recém-Nascido/fisiologia , Tubarões/embriologia , Temperatura
7.
Conserv Physiol ; 4(1): cow059, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27957335

RESUMO

The Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) is a long-lived, anadromous fish species ranging from Labrador, CA to Florida, USA. In the Saco River, located in the Gulf of Maine, this species was not present during a survey study ending in 1982, but was found inhabiting the estuary in 2007. Although the reason for the return of this sturgeon to this river system remains unknown, research on basic life-history information is necessary to facilitate the conservation of this federally protected species. Given the conservation status of the species, the present study used circulating sex steroid hormones to determine the sex of 288 Atlantic sturgeon captured between 2012 and 2014 in the Saco River estuary located in the Gulf of Maine. Overall, the sex was determined for 93% of Atlantic sturgeon sampled. Mean hormone values were similar to other Atlantic sturgeon reproductive studies. The findings indicate the validity of sex steroid hormones as a singular method for sex determination in wild Atlantic sturgeon. Results also indicated a likely 1:1 (male:female) sex ratio in the system, except in 2014 when a 1:3 ratio was observed. It is not believed that the Saco River estuary is used for spawning, as several impassable dams block access to spawning habitat. However, this area might provide crucial foraging for growth and development of juveniles and a habitat for adults forgoing spawning.

8.
Conserv Physiol ; 1(1): cot028, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27293612

RESUMO

Elasmobranch fishes (sharks, skates, and rays) are particularly susceptible to anthropogenic threats, making a thorough understanding of their life history characteristics essential for proper management. Historically, elasmobranch reproductive data have been collected by lethal sampling, an approach that is problematic for threatened and endangered species. However, recent studies have demonstrated that non-lethal approaches can be as effective as lethal ones for assessment of the reproductive status of an animal. For example, plasma has been used to examine concentrations of steroid hormones. Additionally, skeletal muscle tissue, which can be obtained non-lethally and with minimal stress, can also be used to quantify concentrations of steroid hormones. Skeletal muscle progesterone, testosterone, and estradiol concentrations were determined to be statistically significant indicators of reproductive status in the oviparous Leucoraja erinacea, the yolk-dependent viviparous Squalus acanthias, and the yolk-sac placental viviparous Rhizoprionodon terraenovae. The results of the present study demonstrate that steroid hormones present in non-lethally harvested skeletal muscle tissue can be used as reliable indicators of reproductive status in elasmobranchs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...