Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732996

RESUMO

X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron facilities. We present a laboratory-scale nanotomography instrument that achieves nanoscale spatial resolution while addressing the limitations of conventional tomography tools. The instrument combines the electron beam of a scanning electron microscope (SEM) with the precise, broadband X-ray detection of a superconducting transition-edge sensor (TES) microcalorimeter. The electron beam generates a highly focused X-ray spot on a metal target held micrometers away from the sample of interest, while the TES spectrometer isolates target photons with a high signal-to-noise ratio. This combination of a focused X-ray spot, energy-resolved X-ray detection, and unique system geometry enables nanoscale, element-specific X-ray imaging in a compact footprint. The proof of concept for this approach to X-ray nanotomography is demonstrated by imaging 160 nm features in three dimensions in six layers of a Cu-SiO2 integrated circuit, and a path toward finer resolution and enhanced imaging capabilities is discussed.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35529769

RESUMO

Feature sizes in integrated circuits have decreased substantially over time, and it has become increasingly difficult to three-dimensionally image these complex circuits after fabrication. This can be important for process development, defect analysis, and detection of unexpected structures in externally sourced chips, among other applications. Here, we report on a non-destructive, tabletop approach that addresses this imaging problem through x-ray tomography, which we uniquely realize with an instrument that combines a scanning electron microscope (SEM) with a transition-edge sensor (TES) x-ray spectrometer. Our approach uses the highly focused SEM electron beam to generate a small x-ray generation region in a carefully designed target layer that is placed over the sample being tested. With the high collection efficiency and resolving power of a TES spectrometer, we can isolate x-rays generated in the target from background and trace their paths through regions of interest in the sample layers, providing information about the various materials along the x-ray paths through their attenuation functions. We have recently demonstrated our approach using a 240 Mo/Cu bilayer TES prototype instrument on a simplified test sample containing features with sizes of ∼ 1 µm. Currently, we are designing and building a 3000 Mo/Au bilayer TES spectrometer upgrade, which is expected to improve the imaging speed by factor of up to 60 through a combination of increased detector number and detector speed.

3.
Artigo em Inglês | MEDLINE | ID: mdl-23365857

RESUMO

Researchers and clinicians often desire to monitor pressure distributions on soft tissues at interfaces to mechanical devices such as prosthetics, orthotics or shoes. The most common type of sensor used for this type of applications is a Force Sensitive Resistor (FSR) as these are convenient to use and inexpensive. Several other types of sensors exist that may have superior sensing performance but are less ubiquitous or more expensive, such as optical or capacitive sensors. We tested five sensors (two FSRs, one optical, one capacitive and one fluid pressure) in a static drift and cyclic loading configuration. The results show that relative to the important performance characteristics for soft tissue pressure monitoring (i.e. hysteresis, drift), many of the sensors tested have significant limitations. The FSRs exhibited hysteresis, drift and loss of sensitivity under cyclic loading. The capacitive sensor had substantial drift. The optical sensor had some hysteresis and temperature-related drift. The fluid pressure sensor performed well in these tests but is not as flat as the other sensors and is not commercially available. Researchers and clinicians should carefully consider the convenience and performance trade-offs when choosing a sensor for soft-tissue pressure monitoring.


Assuntos
Modelos Teóricos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Pressão , Capacitância Elétrica , Humanos , Dispositivos Ópticos
4.
J Biomech Eng ; 133(4): 041007, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21428681

RESUMO

The external knee adduction moment (KAM) measured during gait is an indicator of tibiofemoral joint osteoarthritis progression and various strategies have been proposed to lower it. Gait retraining has been shown to be an effective, noninvasive approach for lowering the KAM. We present a new gait retraining approach in which the KAM is fed back to subjects in real-time during ambulation. A study was conducted in which 16 healthy subjects learned to alter gait patterns to lower the KAM through visual or tactile (vibration) feedback. Participants converged on a comfortable gait in just a few minutes by using the feedback to iterate on various kinematic modifications. All subjects adopted altered gait patterns with lower KAM compared with normal ambulation (average reduction of 20.7%). Tactile and visual feedbacks were equally effective for real-time training, although subjects using tactile feedback took longer to converge on an acceptable gait. This study shows that real-time feedback of the KAM can greatly increase the effectiveness and efficiency of subject-specific gait retraining compared with conventional methods.


Assuntos
Retroalimentação , Marcha/fisiologia , Joelho/fisiologia , Aprendizagem/fisiologia , Tato/fisiologia , Vibração , Visão Ocular/fisiologia , Adulto , Teste de Esforço , Feminino , Humanos , Cinética , Articulação do Joelho/fisiologia , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Suporte de Carga/fisiologia , Adulto Jovem
5.
Artigo em Inglês | MEDLINE | ID: mdl-22254953

RESUMO

The ability to chronically monitor pressure at the prosthetic socket/residual limb interface could provide important data to the research and clinical communities. With this application in mind, we describe a novel type of sensor which consists of a MEMS pressure sensor and custom electronics packaged in a fluid-filled bubble. The sensor is characterized and compared to two commercially-available technologies. The bubble sensor has excellent drift performance and good sensing resolution. It exhibits hysteresis which may be due to the silicone that the sensor is molded in. To reduce hysteresis, it may be advisable to place the sensor between the liner and the socket rather molding directly into the liner.


Assuntos
Membros Artificiais , Sistemas Microeletromecânicos , Pressão , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...