Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 379: 114875, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944332

RESUMO

Alleviation of motor impairment by aerobic exercise (AE) in Parkinson's disease (PD) patients points to activation of neurobiological mechanisms that may be targetable by therapeutic approaches. However, evidence for AE-related recovery of striatal dopamine (DA) signaling or tyrosine hydroxylase (TH) loss has been inconsistent in rodent studies. This ambiguity may be related to the timing of AE intervention in relation to the status of nigrostriatal neuron loss. Here, we replicated human PD at diagnosis by establishing motor impairment with >80% striatal DA and TH loss prior to initiating AE, and assessed its potential to alleviate motor decline and restore DA and TH loss. We also evaluated if serum levels of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP), biomarkers of human PD severity, changed in response to AE. 6-hydroxydopamine (6-OHDA) was infused unilaterally into rat medial forebrain bundle to induce progressive nigrostriatal neuron loss over 28 days. Moderate intensity AE (3× per week, 40 min/session), began 8-10 days post-lesion following establishment of impaired forelimb use. Striatal tissue DA, TH protein and mRNA, and serum levels of NfL/GFAP were determined 3-wks after AE began. Despite severe striatal DA depletion at AE initiation, forelimb use deficits and hypokinesia onset were alleviated by AE, without recovery of striatal DA or TH protein loss, but reduced NfL and GFAP serum levels. This proof-of-concept study shows AE alleviates motor impairment when initiated with >80% striatal DA loss without obligate recovery of striatal DA or TH protein. Moreover, the AE-related reduction of NfL and GFAP serum levels may serve as objective blood-based biomarkers of AE efficacy.

2.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502851

RESUMO

Background: Alleviation of motor impairment by aerobic exercise (AE) in Parkinson's disease (PD) points to a CNS response that could be targeted by therapeutic approaches, but recovery of striatal dopamine (DA) or tyrosine hydroxylase (TH) has been inconsistent in rodent studies. Objective: To increase translation of AE, 3 components were implemented into AE design to determine if recovery of established motor impairment, concomitant with >80% striatal DA and TH loss, was possible. We also evaluated if serum levels of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP), blood-based biomarkers of disease severity in human PD, were affected. Methods: We used a 6-OHDA hemiparkinson rat model featuring progressive nigrostriatal neuron loss over 28 days, with impaired forelimb use 7 days post-lesion, and hypokinesia onset 21 days post-lesion. After establishing forelimb use deficits, moderate intensity AE began 1-3 days later, 3x per week, for 40 min/session. Motor assessments were conducted weekly for 3 wks, followed by determination of striatal DA, TH protein and mRNA, and NfL and GFAP serum levels. Results: Seven days after 6-OHDA lesion, recovery of depolarization-stimulated extracellular DA and DA tissue content was <10%, representing severity of DA loss in human PD, concomitant with 50% reduction in forelimb use. Despite severe DA loss, recovery of forelimb use deficits and alleviation of hypokinesia progression began after 2 weeks of AE and was maintained. Increased NfLand GFAP levels from lesion were reduced by AE. Despite these AE-driven changes, striatal DA tissue and TH protein levels were unaffected. Conclusions: This proof-of-concept study shows AE, using exercise parameters within the capabilities most PD patients, promotes recovery of established motor deficits in a rodent PD model, concomitant with reduced levels of blood-based biomarkers associated with PD severity, without commensurate increase in striatal DA or TH protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...