Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114323, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38861385

RESUMO

Aberrant male germline development can lead to the formation of seminoma, a testicular germ cell tumor. Seminomas are biologically similar to primordial germ cells (PGCs) and many bear an isochromosome 12p [i(12p)] with two additional copies of the short arm of chromosome 12. By mapping seminoma transcriptomes and open chromatin landscape onto a normal human male germline trajectory, we find that seminoma resembles premigratory/migratory PGCs; however, it exhibits enhanced germline and pluripotency programs and upregulation of genes involved in apoptosis, angiogenesis, and MAPK/ERK pathways. Using pluripotent stem cell-derived PGCs from Pallister-Killian syndrome patients mosaic for i(12p), we model seminoma and identify gene dosage effects that may contribute to transformation. As murine seminoma models do not exist, our analyses provide critical insights into genetic, cellular, and signaling programs driving seminoma transformation, and the in vitro platform developed herein permits evaluation of additional signals required for seminoma tumorigenesis.


Assuntos
Epigênese Genética , Células Germinativas , Seminoma , Neoplasias Testiculares , Humanos , Seminoma/genética , Seminoma/patologia , Seminoma/metabolismo , Masculino , Células Germinativas/metabolismo , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Neoplasias Testiculares/metabolismo , Transcrição Gênica , Regulação Neoplásica da Expressão Gênica , Transcriptoma/genética
2.
Nature ; 630(8015): 174-180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811723

RESUMO

The parasite Cryptosporidium is a leading agent of diarrhoeal disease in young children, and a cause and consequence of chronic malnutrition1,2. There are no vaccines and only limited treatment options3. The parasite infects enterocytes, in which it engages in asexual and sexual replication4, both of which are essential to continued infection and transmission. However, their molecular mechanisms remain largely unclear5. Here we use single-cell RNA sequencing to reveal the gene expression programme of the entire Cryptosporidium parvum life cycle in culture and in infected animals. Diverging from the prevailing model6, we find support for only three intracellular stages: asexual type-I meronts, male gamonts and female gametes. We reveal a highly organized program for the assembly of components at each stage. Dissecting the underlying regulatory network, we identify the transcription factor Myb-M as the earliest determinant of male fate, in an organism that lacks genetic sex determination. Conditional expression of this factor overrides the developmental program and induces widespread maleness, while conditional deletion ablates male development. Both have a profound impact on the infection. A large set of stage-specific genes now provides the opportunity to understand, engineer and disrupt parasite sex and life cycle progression to advance the development of vaccines and treatments.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Regulação da Expressão Gênica , Estágios do Ciclo de Vida , Transcrição Gênica , Animais , Feminino , Humanos , Masculino , Camundongos , Criptosporidiose/parasitologia , Cryptosporidium parvum/genética , Cryptosporidium parvum/crescimento & desenvolvimento , Redes Reguladoras de Genes , Estágios do Ciclo de Vida/genética , Proteínas Proto-Oncogênicas c-myb/genética , Processos de Determinação Sexual/genética , Análise da Expressão Gênica de Célula Única
3.
Cell Rep Med ; 4(10): 101241, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37852175

RESUMO

Allogeneic invariant natural killer T cells (allo-iNKTs) induce clinical remission in patients with otherwise incurable cancers and COVID-19-related acute respiratory failure. However, their functionality is inconsistent among individuals, and they become rapidly undetectable after infusion, raising concerns over rejection and limited therapeutic potential. We validate a strategy to promote allo-iNKT persistence in dogs, an established large-animal model for novel cellular therapies. We identify donor-specific iNKT biomarkers of survival and sustained functionality, conserved in dogs and humans and retained upon chimeric antigen receptor engineering. We reason that infusing optimal allo-iNKTs enriched in these biomarkers will prolong their persistence without requiring MHC ablation, high-intensity chemotherapy, or cytokine supplementation. Optimal allo-iNKTs transferred into MHC-mismatched dogs remain detectable for at least 78 days, exhibiting sustained immunomodulatory effects. Our canine model will accelerate biomarker discovery of optimal allo-iNKT products, furthering application of MHC-unedited allo-iNKTs as a readily accessible universal platform to treat incurable conditions worldwide.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Células T Matadoras Naturais , Humanos , Cães , Animais , Transplante Homólogo , Biomarcadores
4.
PLoS Biol ; 20(5): e3001618, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35536782

RESUMO

Treatment of cancer in children is increasingly successful but leaves many prepubertal boys suffering from infertility or subfertility later in life. A current strategy to preserve fertility in these boys is to cryopreserve a testicular biopsy prior to treatment with the expectation of future technologies allowing for the reintroduction of stem cells and restoration of spermatogenesis. Spermatogonial stem cells (SSCs) form the basis of male reproduction, differentiating into all germ cell types, including mature spermatozoa and can regenerate spermatogenesis following transplantation into an infertile testis. Here, we demonstrate that rat SSCs frozen for more than 20 years can be transplanted into recipient mice and produce all differentiating germ cell types. However, compared with freshly isolated cells or those frozen for a short period of time, long-frozen cells do not colonize efficiently and showed reduced production of spermatids. Single-cell RNA sequencing revealed similar profiles of gene expression changes between short- and long-frozen cells as compared with fresh immediately after thawing. Conversely, following transplantation, long-frozen samples showed enhanced stem cell signaling in the undifferentiated spermatogonia compartment, consistent with self-renewal and a lack of differentiation. In addition, long-frozen samples showed fewer round spermatids with detectable protamine expression, suggesting a partial block of spermatogenesis after meiosis resulting in a lack of elongating spermatids. These findings strongly suggest that prolonged cryopreservation can impact the success of transplantation to produce spermatogenesis, which may not be revealed by analysis of the cells immediately after thawing. Our analysis uncovered persistent effects of long-term freezing not found in other cryopreservation studies that lacked functional regeneration of the tissue and this phenomenon must be accounted for any future therapeutic application.


Assuntos
Células-Tronco Germinativas Adultas , Espermatogênese , Animais , Criopreservação/métodos , Humanos , Masculino , Camundongos , Ratos , Espermatogênese/genética , Espermatogônias/metabolismo , Células-Tronco , Testículo
5.
Biol Reprod ; 105(2): 503-518, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33959758

RESUMO

Retinoic acid (RA) induces spermatogonial differentiation, but the mechanism by which it operates remains largely unknown. We developed a germ cell culture assay system to study genes involved in spermatogonial differentiation triggered by RA. Stimulated by RA 8 (Stra8), a RA-inducible gene, is indispensable for meiosis initiation, and its deletion results in a complete block of spermatogenesis at the pre-leptotene/zygotene stage. To interrogate the role of Stra8 in RA mediated differentiation of spermatogonia, we derived germ cell cultures from the neonatal testis of both wild type and Stra8 knock-out mice. We provide the first evidence that Stra8 plays a crucial role in modulating the responsiveness of undifferentiated spermatogonia to RA and facilitates transition to a differentiated state. Stra8-mediated differentiation is achieved through the downregulation of a large portfolio of genes and pathways, most notably including genes involved in the spermatogonial stem cell self-renewal process. We also report here for the first time the role of transcription elongation regulator-1 like (Tcerg1l) as a downstream effector of RA-induced spermatogonial differentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Embrião de Mamíferos/embriologia , Camundongos/genética , Espermatogônias , Fatores de Elongação da Transcrição/genética , Tretinoína/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Masculino , Camundongos/embriologia , Fatores de Elongação da Transcrição/metabolismo
6.
Cell Prolif ; 54(1): e12933, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33107118

RESUMO

OBJECTIVES: Fibroblast growth factor 9 (FGF9) is expressed by somatic cells in the seminiferous tubules, yet little information exists about its role in regulating spermatogonial stem cells (SSCs). MATERIALS AND METHODS: Fgf9 overexpression lentivirus was injected into mouse testes, and PLZF immunostaining was performed to investigate the effect of FGF9 on spermatogonia in vivo. Effect of FGF9 on SSCs was detected by transplanting cultured germ cells into tubules of testes. RNA-seq of bulk RNA and single cell was performed to explore FGF9 working mechanisms. SB203580 was used to disrupt p38 MAPK pathway. p38 MAPK protein expression was detected by Western blot and qPCR was performed to determine different gene expression. Small interfering RNA (siRNA) was used to knock down Etv5 gene expression in germ cells. RESULTS: Overexpression of Fgf9 in vivo resulted in arrested spermatogenesis and accumulation of undifferentiated spermatogonia. Exposure of germ cell cultures to FGF9 resulted in larger numbers of SSCs over time. Inhibition of p38 MAPK phosphorylation negated the SSC growth advantage provided by FGF9. Etv5 and Bcl6b gene expressions were enhanced by FGF9 treatment. Gene knockdown of Etv5 disrupted the growth effect of FGF9 in cultured SSCs along with downstream expression of Bcl6b. CONCLUSIONS: Taken together, these data indicate that FGF9 is an important regulator of SSC proliferation, operating through p38 MAPK phosphorylation and upregulating Etv5 and Bcl6b in turn.


Assuntos
Fator 9 de Crescimento de Fibroblastos/metabolismo , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/metabolismo , Espermatogônias/citologia , Células-Tronco/citologia
7.
Methods Mol Biol ; 2005: 205-220, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31175655

RESUMO

Spermatogonial stem cell (SSC) culture and transplantation pave the way for clinical restoration of fertility in male prepubertal cancer survivors. In this chapter we detail the steps for isolating and freezing testicular tissue along with protocols for the subsequent recovery from cryopreservation and transplantation of cells into a recipient testis. Transplantation of cultured or thawed SSCs provides not only a functional assay for identification of stem cells, a critical tool for the study of the germline stem cell niche in model organisms, but also a framework for reconstitution of spermatogenesis in humans. As proof of concept, the outlined methods have been performed successfully in the murine model and have the potential to be translated to clinical environments.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Separação Celular/métodos , Criopreservação/métodos , Modelos Biológicos , Espermatogênese , Nicho de Células-Tronco , Transplante de Células-Tronco/métodos , Animais , Humanos , Masculino , Camundongos , Camundongos Transgênicos
8.
Bioinformatics ; 32(24): 3790-3797, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27531106

RESUMO

MOTIVATION: As the mean age of parenthood grows, the effect of parental age on genetic disease and child health becomes ever more important. A number of autosomal dominant disorders show a dramatic paternal age effect due to selfish mutations: substitutions that grant spermatogonial stem cells (SSCs) a selective advantage in the testes of the father, but have a deleterious effect in offspring. In this paper we present a computational technique to model the SSC niche in order to examine the phenomenon and draw conclusions across different genes and disorders. RESULTS: We used a Markov chain to model the probabilities of mutation and positive selection with cell divisions. The model was fitted to available data on disease incidence and also mutation assays of sperm donors. Strength of selective advantage is presented for a range of disorders including Apert's syndrome and achondroplasia. Incidence of the diseases was predicted closely for most disorders and was heavily influenced by the site-specific mutation rate and the number of mutable alleles. The model also successfully predicted a stronger selective advantage for more strongly activating gain-of-function mutations within the same gene. Both positive selection and the rate of copy-error mutations are important in adequately explaining the paternal age effect. AVAILABILITY AND IMPLEMENTATION: C ++/R source codes and documentation including compilation instructions are available under GNU license at https://github.com/anwala/NicheSimulation CONTACT: ewhel001@odu.eduSupplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Simulação por Computador , Acúmulo de Mutações , Idade Paterna , Células-Tronco Germinativas Adultas/fisiologia , Humanos , Masculino , Cadeias de Markov , Mutação , Seleção Genética , Espermatogônias/fisiologia , Nicho de Células-Tronco , Testículo
9.
Nanotechnology ; 27(33): 335101, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27378394

RESUMO

Nanomaterial based imaging approaches hold substantial promise in addressing current diagnostic and therapeutic challenges. One of the key requirements for the successful clinical translation of nanomaterials is their complete clearance from the body within a reasonable time period preferably via the renal filtration route. This article describes the synthesis of highly fluorescent, water soluble, resorcinarene cavitand nanocapsules and demonstrates their effective renal clearance in mice. The synthesis and functionalization of nanocapsules was accomplished in a one-pot operation via thiol-ene reactions without involving self-assembly, sacrificial templates or emulsions. Water soluble resorcinarene cavitand nanocapsules obtained by this approach were covalently functionalized with Alexa Fluor 750. Highly fluorescent nanocapsules with hydrodynamic diameters of 122 nm and 68 nm and extinction coefficients of 1.3 × 10(9) M(-1) cm(-1) and 1.5 × 10(8) M(-1) cm(-1) respectively were prepared by varying the reaction conditions. The in vivo biodistribution and clearance of these nanocapsules in mice followed by whole-body fluorescence imaging showed that they were both cleared renally within a few hours. Given the inherent encapsulation capabilities of nanocapsules, the renal clearance demonstrated in this work opens up new opportunities for their theranostic applications especially for targeting and treating the urinary tract.


Assuntos
Nanocápsulas , Animais , Calixarenos , Éteres Cíclicos , Camundongos , Fenilalanina/análogos & derivados , Resorcinóis , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...