Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044674

RESUMO

The genes encoding ribosomal RNA are highly conserved across life and in almost all eukaryotes are present in large tandem repeat arrays called the rDNA. rDNA repeat unit size is conserved across most eukaryotes, but has expanded dramatically in mammals, principally through expansion of the intergenic spacer region that separates adjacent rRNA coding regions. Here we used long-read sequence data from representatives of the major amniote lineages to determine where in amniote evolution rDNA unit size increased. We find that amniote rDNA unit sizes fall into two narrow size classes: 'normal' (∼11-20 kb) in all amniotes except monotreme, marsupial and eutherian mammals, which have 'large' (∼35-45 kb) sizes. We confirm that increases in intergenic spacer length explain much of this mammalian size increase but, in stark contrast to the uniformity of mammalian rDNA unit size, mammalian intergenic spacers differ greatly in sequence. These results suggest a large increase in intergenic spacer size occurred in a mammalian ancestor and has been maintained despite substantial sequence changes over the course of mammalian evolution. This points to a previously unrecognized constraint on the length of the intergenic spacer, a region that was thought to be largely neutral. We finish by speculating on possible causes of this constraint.

2.
Commun Biol ; 7(1): 575, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750083

RESUMO

Despite extensive research on avian vocal learning, we still lack a general understanding of how and when this ability evolved in birds. As the closest living relatives of the earliest Passeriformes, the New Zealand wrens (Acanthisitti) hold a key phylogenetic position for furthering our understanding of the evolution of vocal learning because they share a common ancestor with two vocal learners: oscines and parrots. However, the vocal learning abilities of New Zealand wrens remain unexplored. Here, we test for the presence of prerequisite behaviors for vocal learning in one of the two extant species of New Zealand wrens, the rifleman (Acanthisitta chloris). We detect the presence of unique individual vocal signatures and show how these signatures are shaped by social proximity, as demonstrated by group vocal signatures and strong acoustic similarities among distantly related individuals in close social proximity. Further, we reveal that rifleman calls share similar phenotypic variance ratios to those previously reported in the learned vocalizations of the zebra finch, Taeniopygia guttata. Together these findings provide strong evidence that riflemen vocally converge, and though the mechanism still remains to be determined, they may also suggest that this vocal convergence is the result of rudimentary vocal learning abilities.


Assuntos
Aves Canoras , Vocalização Animal , Animais , Aves Canoras/fisiologia , Comportamento Social , Nova Zelândia , Masculino , Aprendizagem , Feminino , Evolução Biológica
3.
DNA Res ; 31(2)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38366840

RESUMO

In an era of global climate change, biodiversity conservation is receiving increased attention. Conservation efforts are greatly aided by genetic tools and approaches, which seek to understand patterns of genetic diversity and how they impact species health and their ability to persist under future climate regimes. Invasive species offer vital model systems in which to investigate questions regarding adaptive potential, with a particular focus on how changes in genetic diversity and effective population size interact with novel selection regimes. The common myna (Acridotheres tristis) is a globally invasive passerine and is an excellent model species for research both into the persistence of low-diversity populations and the mechanisms of biological invasion. To underpin research on the invasion genetics of this species, we present the genome assembly of the common myna. We describe the genomic landscape of this species, including genome wide allelic diversity, methylation, repeats, and recombination rate, as well as an examination of gene family evolution. Finally, we use demographic analysis to identify that some native regions underwent a dramatic population increase between the two most recent periods of glaciation, and reveal artefactual impacts of genetic bottlenecks on demographic analysis.


Assuntos
Estorninhos , Animais , Espécies Introduzidas , Genoma , Genômica
4.
Mol Biol Evol ; 40(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37467472

RESUMO

Quantifying gene flow between lineages at different stages of the speciation continuum is central to understanding speciation. Heliconius butterflies have undergone an adaptive radiation in wing color patterns driven partly by natural selection for local mimicry. Color patterns are also known to be used as assortative mating cues. Therefore, wing pattern divergence is considered to play a role in speciation. A corollary is that mimicry between closely related species may be associated with hybridization and interfere with reproductive isolation. Here, we take a multifaceted approach to explore speciation history, species boundaries, and traits involved in species differentiation between the two closely related species, Heliconius hecale and Heliconius ismenius. We focus on geographic regions where the two species mimic each other and contrast this with geographic regions where they do not mimic each other. To examine population history and patterns of gene flow, we tested and compared a four-population model accounting for linked selection. This model suggests that the two species have remained isolated for a large part of their history, yet with a small amount of gene exchange. Accordingly, signatures of genomic introgression were small except at a major wing pattern allele and chemosensing genes and stronger in the mimetic populations compared with nonmimetic populations. Behavioral assays confirm that visual confusion exists but that short-range cues determine strong sexual isolation. Tests for chemical differentiation between species identified major differences in putative pheromones which likely mediate mate choice and the maintenance of species differences.


Assuntos
Borboletas , Especiação Genética , Animais , Borboletas/genética , Isolamento Reprodutivo , Hibridização Genética , Fenótipo , Asas de Animais
5.
Mol Ecol Resour ; 2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37332137

RESUMO

A high-quality reference genome can be a valuable resource for threatened species by providing a foundation to assess their evolutionary potential to adapt to future pressures such as environmental change. We assembled the genome of a female hihi (Notiomysits cincta), a threatened passerine bird endemic to Aotearoa New Zealand. The assembled genome is 1.06 Gb, and is of high quality and highly contiguous, with a contig N50 of 7.0 Mb, estimated QV of 44 and a BUSCO completeness of 96.8%. A male assembly of comparable quality was generated in parallel. A population linkage map was used to scaffold the autosomal contigs into chromosomes. Female and male sequence coverage and comparative genomics analyses were used to identify Z-, and W-linked contigs. In total, 94.6% of the assembly length was assigned to putative nuclear chromosome scaffolds. Native DNA methylation was highly correlated between sexes, with the W chromosome contigs more highly methylated than autosomal chromosomes and Z contigs. 43 differentially methylated regions were identified, and these may represent interesting candidates for the establishment or maintenance of sex differences. By generating a high-quality reference assembly of the heterogametic sex, we have created a resource that enables characterization of genome-wide diversity and facilitates the investigation of female-specific evolutionary processes. The reference genomes will form the basis for fine-scale assessment of the impacts of low genetic diversity and inbreeding on the adaptive potential of the species and will therefore enable tailored and informed conservation management of this threatened taonga (treasured) species.

6.
Science ; 380(6651): 1275-1281, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37347863

RESUMO

Growth coordination between cell layers is essential for development of most multicellular organisms. Coordination may be mediated by molecular signaling and/or mechanical connectivity between cells, but how genes modify mechanical interactions between layers is unknown. Here we show that genes driving brassinosteroid synthesis promote growth of internal tissue, at least in part, by reducing mechanical epidermal constraint. We identified a brassinosteroid-deficient dwarf mutant in the aquatic plant Utricularia gibba with twisted internal tissue, likely caused by mechanical constraint from a slow-growing epidermis. We tested this hypothesis by showing that a brassinosteroid mutant in Arabidopsis enhances epidermal crack formation, indicative of increased tissue stress. We propose that by remodeling cell walls, brassinosteroids reduce epidermal constraint, showing how genes can control growth coordination between layers by means of mechanics.


Assuntos
Brassinosteroides , Lamiales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/biossíntese , Comunicação Celular , Parede Celular/metabolismo , Lamiales/citologia , Lamiales/genética , Lamiales/metabolismo , Epiderme Vegetal/metabolismo
7.
Heredity (Edinb) ; 131(1): 56-67, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37193854

RESUMO

The common myna (Acridotheres tristis) is one of the most invasive bird species in the world, yet its colonisation history is only partly understood. We identified the introduction history and population structure, and quantified the genetic diversity of myna populations from the native range in India and introduced populations in New Zealand, Australia, Fiji, Hawaii, and South Africa, based on thousands of single nucleotide polymorphism markers in 814 individuals. We were able to identify the source population of mynas in several invasive locations: mynas from Fiji and Melbourne, Australia, were likely founded by individuals from a subpopulation in Maharashtra, India, while mynas in Hawaii and South Africa were likely independently founded by individuals from other localities in India. Our findings suggest that New Zealand mynas were founded by individuals from Melbourne, which, in turn, were founded by individuals from Maharashtra. We identified two genetic clusters among New Zealand mynas, divided by New Zealand's North Island's axial mountain ranges, confirming previous observations that mountains and thick forests may form barriers to myna dispersal. Our study provides a foundation for other population and invasion genomic studies and provides useful information for the management of this invasive species.


Assuntos
Espécies Introduzidas , Estorninhos , Metagenômica , Animais , Estorninhos/genética , Variação Genética
8.
Mol Ecol ; 32(8): 1893-1907, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36655901

RESUMO

For small and isolated populations, the increased chance of mating between related individuals can result in a substantial reduction in individual and population fitness. Despite the increasing availability of genomic data to measure inbreeding accurately across the genome, inbreeding depression studies for threatened species are still scarce due to the difficulty of measuring fitness in the wild. Here, we investigate inbreeding and inbreeding depression for the extensively monitored Tiritiri Matangi island population of a threatened Aotearoa New Zealand passerine, the hihi (Notiomystis cincta). First, using a custom 45 k single nucleotide polymorphism (SNP) array, we explore genomic inbreeding patterns by inferring homozygous segments across the genome. Although all individuals have similar levels of ancient inbreeding, highly inbred individuals are affected by recent inbreeding, which can probably be explained by bottleneck effects such as habitat loss after European arrival and their translocation to the island in the 1990s. Second, we investigate genomic inbreeding effects on fitness, measured as lifetime reproductive success, and its three components, juvenile survival, adult annual survival and annual reproductive success, in 363 hihi. We find that global inbreeding significantly affects juvenile survival but none of the remaining fitness traits. Finally, we employ a genome-wide association approach to test the locus-specific effects of inbreeding on fitness, and identify 13 SNPs significantly associated with lifetime reproductive success. Our findings suggest that inbreeding depression does impact hihi, but at different genomic scales for different traits, and that purging has therefore failed to remove all variants with deleterious effects from this population of conservation concern.


Assuntos
Depressão por Endogamia , Passeriformes , Humanos , Animais , Nova Zelândia , Estudo de Associação Genômica Ampla , Endogamia , Genômica , Polimorfismo de Nucleotídeo Único/genética , Homozigoto
9.
Mol Ecol Resour ; 23(4): 872-885, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36533297

RESUMO

The ithomiine butterflies (Nymphalidae: Danainae) represent the largest known radiation of Müllerian mimetic butterflies. They dominate by number the mimetic butterfly communities, which include species such as the iconic neotropical Heliconius genus. Recent studies on the ecology and genetics of speciation in Ithomiini have suggested that sexual pheromones, colour pattern and perhaps hostplant could drive reproductive isolation. However, no reference genome was available for Ithomiini, which has hindered further exploration on the genetic architecture of these candidate traits, and more generally on the genomic patterns of divergence. Here, we generated high-quality, chromosome-scale genome assemblies for two Melinaea species, M. marsaeus and M. menophilus, and a draft genome of the species Ithomia salapia. We obtained genomes with a size ranging from 396 to 503 Mb across the three species and scaffold N50 of 40.5 and 23.2 Mb for the two chromosome-scale assemblies. Using collinearity analyses we identified massive rearrangements between the two closely related Melinaea species. An annotation of transposable elements and gene content was performed, as well as a specialist annotation to target chemosensory genes, which is crucial for host plant detection and mate recognition in mimetic species. A comparative genomic approach revealed independent gene expansions in ithomiines and particularly in gustatory receptor genes. These first three genomes of ithomiine mimetic butterflies constitute a valuable addition and a welcome comparison to existing biological models such as Heliconius, and will enable further understanding of the mechanisms of adaptation in butterflies.


Assuntos
Borboletas , Animais , Borboletas/genética , Adaptação Fisiológica , Fenótipo , Genômica , Cromossomos/genética
10.
Plant J ; 112(4): 1029-1050, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36178149

RESUMO

Flowering of the reference legume Medicago truncatula is promoted by winter cold (vernalization) followed by long-day photoperiods (VLD) similar to winter annual Arabidopsis. However, Medicago lacks FLC and CO, key regulators of Arabidopsis VLD flowering. Most plants have two INHIBITOR OF GROWTH (ING) genes (ING1 and ING2), encoding proteins with an ING domain with two anti-parallel alpha-helices and a plant homeodomain (PHD) finger, but their genetic role has not been previously described. In Medicago, Mting1 gene-edited mutants developed and flowered normally, but an Mting2-1 Tnt1 insertion mutant and gene-edited Mting2 mutants had developmental abnormalities including delayed flowering particularly in VLD, compact architecture, abnormal leaves with extra leaflets but no trichomes, and smaller seeds and barrels. Mting2 mutants had reduced expression of activators of flowering, including the FT-like gene MtFTa1, and increased expression of the candidate repressor MtTFL1c, consistent with the delayed flowering of the mutant. MtING2 overexpression complemented Mting2-1, but did not accelerate flowering in wild type. The MtING2 PHD finger bound H3K4me2/3 peptides weakly in vitro, but analysis of gene-edited mutants indicated that it was dispensable to MtING2 function in wild-type plants. RNA sequencing experiments indicated that >7000 genes are mis-expressed in the Mting2-1 mutant, consistent with its strong mutant phenotypes. Interestingly, ChIP-seq analysis identified >5000 novel H3K4me3 locations in the genome of Mting2-1 mutants compared to wild type R108. Overall, our mutant study has uncovered an important physiological role of a plant ING2 gene in development, flowering, and gene expression, which likely involves an epigenetic mechanism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Medicago truncatula , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Plantas/metabolismo , Dedos de Zinco PHD , Flores , Medicago truncatula/genética , Medicago truncatula/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Domínio MADS/genética
11.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210193, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35694756

RESUMO

Supergenes are genetic architectures associated with discrete and concerted variation in multiple traits. It has long been suggested that supergenes control these complex polymorphisms by suppressing recombination between sets of coadapted genes. However, because recombination suppression hinders the dissociation of the individual effects of genes within supergenes, there is still little evidence that supergenes evolve by tightening linkage between coadapted genes. Here, combining a landmark-free phenotyping algorithm with multivariate genome-wide association studies, we dissected the genetic basis of wing pattern variation in the butterfly Heliconius numata. We show that the supergene controlling the striking wing pattern polymorphism displayed by this species contains several independent loci associated with different features of wing patterns. The three chromosomal inversions of this supergene suppress recombination between these loci, supporting the hypothesis that they may have evolved because they captured beneficial combinations of alleles. Some of these loci are, however, associated with colour variations only in a subset of morphs where the phenotype is controlled by derived inversion forms, indicating that they were recruited after the formation of the inversions. Our study shows that supergenes and clusters of adaptive loci in general may form via the evolution of chromosomal rearrangements suppressing recombination between co-adapted loci but also via the subsequent recruitment of linked adaptive mutations. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Assuntos
Borboletas , Alelos , Animais , Borboletas/genética , Inversão Cromossômica , Cor , Estudo de Associação Genômica Ampla , Fenótipo , Asas de Animais
12.
Mol Ecol Resour ; 22(1): 415-429, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34323011

RESUMO

Next-generation sequencing has transformed the fields of ecological and evolutionary genetics by allowing for cost-effective identification of genome-wide variation. Single nucleotide polymorphism (SNP) arrays, or "SNP chips", enable very large numbers of individuals to be consistently genotyped at a selected set of these identified markers, and also offer the advantage of being able to analyse samples of variable DNA quality. We used reduced representation restriction-aided digest sequencing (RAD-seq) of 31 birds of the threatened hihi (Notiomystis cincta; stitchbird) and low-coverage whole genome sequencing (WGS) of 10 of these birds to develop an Affymetrix 50 K SNP chip. We overcame the limitations of having no hihi reference genome and a low quantity of sequence data by separate and pooled de novo assembly of each of the 10 WGS birds. Reads from all individuals were mapped back to these de novo assemblies to identify SNPs. A subset of RAD-seq and WGS SNPs were selected for inclusion on the chip, prioritising SNPs with the highest quality scores whose flanking sequence uniquely aligned to the zebra finch (Taeniopygia guttata) genome. Of the 58,466 SNPs manufactured on the chip, 72% passed filtering metrics and were polymorphic. By genotyping 1,536 hihi on the array, we found that SNPs detected in multiple assemblies were more likely to successfully genotype, representing a cost-effective approach to identify SNPs for genotyping. Here, we demonstrate the utility of the SNP chip by describing the high rates of linkage disequilibrium in the hihi genome, reflecting the history of population bottlenecks in the species.


Assuntos
Passeriformes , Polimorfismo de Nucleotídeo Único , Animais , Nova Zelândia , Passeriformes/genética
13.
Mol Ecol ; 30(23): 6006-6020, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34242449

RESUMO

Inbreeding can lead to a loss of heterozygosity in a population and when combined with genetic drift may reduce the adaptive potential of a species. However, there is uncertainty about whether resequencing data can provide accurate and consistent inbreeding estimates. Here, we performed an in-depth inbreeding analysis for hihi (Notiomystis cincta), an endemic and nationally vulnerable passerine bird of Aotearoa New Zealand. We first focused on subsampling variants from a reference genome male, and found that low-density data sets tend to miss runs of homozygosity (ROH) in some places and overestimate ROH length in others, resulting in contrasting homozygosity landscapes. Low-coverage resequencing and 50 K SNP array densities can yield comparable inbreeding results to high-coverage resequencing approaches, but the results for all data sets are highly dependent on the software settings employed. Second, we extended our analysis to 10 hihi where low-coverage whole genome resequencing, RAD-seq and SNP array genotypes are available. We inferred ROH and individual inbreeding to evaluate the relative effects of sequencing depth versus SNP density on estimating inbreeding coefficients and found that high rates of missingness downwardly bias both the number and length of ROH. In summary, when using genomic data to evaluate inbreeding, studies must consider that ROH estimates are heavily dependent on analysis parameters, data set density and individual sequencing depth.


Assuntos
Endogamia , Polimorfismo de Nucleotídeo Único , Animais , Genômica , Genótipo , Homozigoto , Masculino , Nova Zelândia , Polimorfismo de Nucleotídeo Único/genética
14.
Mol Ecol Resour ; 21(4): 1005-1007, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33539649

RESUMO

Whilst the global threat to biodiversity is accelerating, recent advances in sequencing and assembly technologies, along with decreasing costs, are ushering in a golden age for biodiversity genomics. In a From the Cover article in this issue of Molecular Ecology Resources, Morin et al. report an exceptionally high-quality draft genome assembly of the vaquita (Phocoena sinus), a porpoise first described in 1958 and currently numbering fewer than 20 individuals in the wild. On the brink of extinction and described as critically endangered by the International Union for the Conservation of Nature (IUCN), a precipitous population decline since the 1990 s has been due to bycatch in gillnets in the Upper Gulf of California.


Assuntos
Conservação dos Recursos Naturais , Phocoena , Animais , Biodiversidade , Estudos Longitudinais
16.
Nat Genet ; 53(3): 288-293, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495598

RESUMO

Chromosomal inversions are ubiquitous in genomes and often coordinate complex phenotypes, such as the covariation of behavior and morphology in many birds, fishes, insects or mammals1-11. However, why and how inversions become associated with polymorphic traits remains obscure. Here we show that despite a strong selective advantage when they form, inversions accumulate recessive deleterious mutations that generate frequency-dependent selection and promote their maintenance at intermediate frequency. Combining genomics and in vivo fitness analyses in a model butterfly for wing-pattern polymorphism, Heliconius numata, we reveal that three ecologically advantageous inversions have built up a heavy mutational load from the sequential accumulation of deleterious mutations and transposable elements. Inversions associate with sharply reduced viability when homozygous, which prevents them from replacing ancestral chromosome arrangements. Our results suggest that other complex polymorphisms, rather than representing adaptations to competing ecological optima, could evolve because chromosomal rearrangements are intrinsically prone to carrying recessive harmful mutations.


Assuntos
Borboletas/genética , Inversão Cromossômica , Genes de Insetos , Polimorfismo Genético , Asas de Animais/fisiologia , Adaptação Fisiológica/genética , Alelos , Animais , Borboletas/fisiologia , Evolução Molecular , Feminino , Genética Populacional , Genoma de Inseto , Haplótipos/genética , Larva/genética , Masculino , Preferência de Acasalamento Animal , Mutação , Pigmentação/genética
17.
Mol Ecol Resour ; 21(3): 641-652, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33326691

RESUMO

The quality of genome assemblies has improved rapidly in recent years due to continual advances in sequencing technology, assembly approaches, and quality control. In the field of molecular ecology, this has led to the development of exceptional quality genome assemblies that will be important long-term resources for broader studies into ecological, conservation, evolutionary, and population genomics of naturally occurring species. Moreover, the extent to which a single reference genome represents the diversity within a species varies: pan-genomes will become increasingly important ecological genomics resources, particularly in systems found to have considerable presence-absence variation in their functional content. Here, we highlight advances in technology that have raised the bar for genome assembly and provide guidance on standards to achieve exceptional quality reference genomes. Key recommendations include the following: (a) Genome assemblies should include long-read sequencing except in rare cases where it is effectively impossible to acquire adequately preserved samples needed for high molecular weight DNA standards. (b) At least one scaffolding approach should be included with genome assembly such as Hi-C or optical mapping. (c) Genome assemblies should be carefully evaluated, this may involve utilising short read data for genome polishing, error correction, k-mer analyses, and estimating the percent of reads that map back to an assembly. Finally, a genome assembly is most valuable if all data and methods are made publicly available and the utility of a genome for further studies is verified through examples. While these recommendations are based on current technology, we anticipate that future advances will push the field further and the molecular ecology community should continue to adopt new approaches that attain the highest quality genome assemblies.


Assuntos
Genoma , Genômica , Análise de Sequência de DNA , Genômica/tendências
18.
Mol Ecol ; 29(7): 1328-1343, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32145112

RESUMO

Hybrid zones, whereby divergent lineages come into contact and eventually hybridize, can provide insights on the mechanisms involved in population differentiation and reproductive isolation, and ultimately speciation. Suture zones offer the opportunity to compare these processes across multiple species. In this paper we use reduced-complexity genomic data to compare the genetic and phenotypic structure and hybridization patterns of two mimetic butterfly species, Ithomia salapia and Oleria onega (Nymphalidae: Ithomiini), each consisting of a pair of lineages differentiated for their wing colour pattern and that come into contact in the Andean foothills of Peru. Despite similarities in their life history, we highlight major differences, both at the genomic and phenotypic level, between the two species. These differences include the presence of hybrids, variations in wing phenotype, and genomic patterns of introgression and differentiation. In I. salapia, the two lineages appear to hybridize only rarely, whereas in O. onega the hybrids are not only more common, but also genetically and phenotypically more variable. We also detected loci statistically associated with wing colour pattern variation, but in both species these loci were not over-represented among the candidate barrier loci, suggesting that traits other than wing colour pattern may be important for reproductive isolation. Our results contrast with the genomic patterns observed between hybridizing lineages in the mimetic Heliconius butterflies, and call for a broader investigation into the genomics of speciation in Ithomiini - the largest radiation of mimetic butterflies.


Assuntos
Borboletas/genética , Genética Populacional , Hibridização Genética , Animais , Borboletas/classificação , Especiação Genética , Genoma de Inseto , Genótipo , Peru , Fenótipo , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Asas de Animais/anatomia & histologia
19.
Nat Plants ; 5(2): 174-183, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30692677

RESUMO

Snapdragon (Antirrhinum majus L.), a member of the Plantaginaceae family, is an important model for plant genetics and molecular studies on plant growth and development, transposon biology and self-incompatibility. Here we report a near-complete genome assembly of A. majus cultivar JI7 (A. majus cv.JI7) comprising 510 Megabases (Mb) of genomic sequence and containing 37,714 annotated protein-coding genes. Scaffolds covering 97.12% of the assembled genome were anchored on eight chromosomes. Comparative and evolutionary analyses revealed that a whole-genome duplication event occurred in the Plantaginaceae around 46-49 million years ago (Ma). We also uncovered the genetic architectures associated with complex traits such as flower asymmetry and self-incompatibility, identifying a unique duplication of TCP family genes dated to around 46-49 Ma and reconstructing a near-complete ψS-locus of roughly 2 Mb. The genome sequence obtained in this study not only provides a representative genome sequenced from the Plantaginaceae but also brings the popular plant model system of Antirrhinum into the genomic age.


Assuntos
Antirrhinum/genética , Genoma de Planta , Proteínas de Plantas/genética , Evolução Biológica , Flores/anatomia & histologia , Flores/genética , Flores/fisiologia , Duplicação Gênica , Anotação de Sequência Molecular , Filogenia , Autoincompatibilidade em Angiospermas/genética
20.
Proc Natl Acad Sci U S A ; 115(43): 11006-11011, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297406

RESUMO

Genomes of closely-related species or populations often display localized regions of enhanced relative sequence divergence, termed genomic islands. It has been proposed that these islands arise through selective sweeps and/or barriers to gene flow. Here, we genetically dissect a genomic island that controls flower color pattern differences between two subspecies of Antirrhinum majus, A.m.striatum and A.m.pseudomajus, and relate it to clinal variation across a natural hybrid zone. We show that selective sweeps likely raised relative divergence at two tightly-linked MYB-like transcription factors, leading to distinct flower patterns in the two subspecies. The two patterns provide alternate floral guides and create a strong barrier to gene flow where populations come into contact. This barrier affects the selected flower color genes and tightly-linked loci, but does not extend outside of this domain, allowing gene flow to lower relative divergence for the rest of the chromosome. Thus, both selective sweeps and barriers to gene flow play a role in shaping genomic islands: sweeps cause elevation in relative divergence, while heterogeneous gene flow flattens the surrounding "sea," making the island of divergence stand out. By showing how selective sweeps establish alternative adaptive phenotypes that lead to barriers to gene flow, our study sheds light on possible mechanisms leading to reproductive isolation and speciation.


Assuntos
Flores/genética , Fluxo Gênico/genética , Ilhas Genômicas/genética , Seleção Genética/genética , Antirrhinum/genética , Cromossomos de Plantas/genética , Cor , Especiação Genética , Genoma de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...