Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 180: 545-552, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28432891

RESUMO

The soil matrix can sequester arsenic (As) and reduces its exposure by soil ingestion. In vivo dosing studies and in vitro gastrointestinal (IVG) methods have been used to predict relative bioavailable (RBA) As. Originally, the Ohio State University (OSU-IVG) method predicted RBA As for soils exclusively from mining and smelting sites with a median of 5,636 mg As kg-1. The objectives of the current study were to (i) evaluate the ability of the OSU-IVG method to predict RBA As for As contaminated soils with a wider range of As content and As contaminant sources, and (ii) evaluate a modified extraction procedure's ability to improve prediction of RBA As. In vitro bioaccessible (IVBA) by OSU-IVG and California Bioaccessibility Method (CAB) methods, RBA As, speciation, and properties of 33 As contaminated soils were determined. Total As ranged from 162 to 12,483 mg kg-1 with a median of 73 mg kg-1. RBA As ranged from 1.30 to 60.0% and OSU-IVG IVBA As ranged from 0.80 to 52.3%. Arsenic speciation was predominantly As(V) adsorbed to hydrous ferric oxide (HFO) or iron (Fe), manganese (Mn), and aluminum (Al) oxides. The OSU-IVG often extracted significantly less As in vitro than in vivo RBA As, in particularly for soils from historical gold mining. The CAB method, which is a modified OSU-IVG method extracted more As than OSU-IVG for most soils, resulting in a more accurate predictor than OSU-IVG, especially for low to moderately contaminated soils (<1,500 mg As kg-1) with RBA As = 0.81 IVBA As + 3.2, r2 = 0.91.


Assuntos
Arsênio/análise , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Solo/química , Poluição Ambiental , Técnicas In Vitro
2.
Artigo em Inglês | MEDLINE | ID: mdl-23442113

RESUMO

In order for in vitro methods to become widely accepted as tools that accurately assess soil arsenic (As) exposure through the oral ingestion pathway, a better understanding is needed regarding which fractions of soil As are being measured in the in vitro extraction. The objective of the current study is to (1) identify in vitro bioaccessible (IVBA) and non-IVBA fractions of soil As using sequential extraction; and (2) determine the sorptive phases of soil in non-IVBA As soil fractions. Nineteen soils with a range of soil properties were spiked with 250 mg/kg of sodium arsenate and aged. In vitro bioaccessible As (IVBA As) was then determined using The Ohio State University in vitro gastrointestinal method (OSU-IVG), and soil As was fractionated using sequential extraction into: (F1) non-specifically sorbed; (F2) specifically sorbed; (F3) amorphous and poorly crystalline oxides of Fe and Al; (F4) well-crystallized oxides of Fe and Al and residual As phases. The IVBA As across the 19 soil ranged from 0.36 to 2.75 mmol/kg (12 to 86%) with a mean of 1.26 mmol/kg (42%) in the gastric phase and from 0.39 to 2.80 mmol/kg (13 to 87%) in the intestinal phase with a mean of 1.32 mmol/kg (43%). The results of the sequential extraction showed that IVBA As extracted by the OSU-IVG is the As present in the first two fraction (F1 and F2) of the sequential extraction. In the non-IVBA fractions, highly significant relationships (P < 0.01) exist between F3 As and log transformed F3 Fe (r (2) = 0.74), but not F3 Al. In addition, the gastric extraction dissolves a significant fraction of soil Al, but not soil Fe, therefore As sorbed to Al oxides likely contributed to IVBA As and is accounted for in the F2 fraction of the sequential extraction. In vitro methods that demonstrate the ability to extract the similar soil fractions that occur in vivo across a wide range of soil types and As-contaminant sources is an important criteria for in vitro method validation. Further research that includes soils with multiple As-contaminant sources (mining, pesticide, etc.), soil As fractionation, and in vivo bioavailability is needed in order to determine if F1+F2 are the bioavailable As fractions in soils that vary in total As content and sorbed As species.


Assuntos
Arsênio/farmacocinética , Simulação por Computador , Trato Gastrointestinal/metabolismo , Modelos Biológicos , Poluentes do Solo/farmacocinética , Solo/química , Alumínio/química , Arsênio/química , Disponibilidade Biológica , Fracionamento Químico , Fenômenos Químicos , Humanos , Ferro/química , Óxidos , Poluentes do Solo/química
3.
Environ Health Perspect ; 118(7): 1004-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20603239

RESUMO

BACKGROUND: Speciation analysis is essential when evaluating risks from arsenic (As) exposure. In an oral exposure scenario, the importance of presystemic metabolism by gut microorganisms has been evidenced with in vivo animal models and in vitro experiments with animal microbiota. However, it is unclear whether human microbiota display similar As metabolism, especially when present in a contaminated matrix. OBJECTIVES: We evaluated the metabolic potency of in vitro cultured human colon microbiota toward inorganic As (iAs) and As-contaminated soils. METHODS: A colon microbial community was cultured in a dynamic model of the human gut. These colon microbiota were incubated with iAs and with As-contaminated urban soils. We determined As speciation analysis using high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. RESULTS: We found a high degree of methylation for colon digests both of iAs (10 microg methylarsenical/g biomass/hr) and of As-contaminated soils (up to 28 microg/g biomass/hr). Besides the formation of monomethylarsonic acid (MMA(V)), we detected the highly toxic monomethylarsonous acid (MMA(III)). Moreover, this is the first description of microbial thiolation leading to monomethylmonothioarsonic acid (MMMTA(V)). MMMTA(V), the toxicokinetic properties of which are not well known, was in many cases a major metabolite. CONCLUSIONS: Presystemic As metabolism is a significant process in the human body. Toxicokinetic studies aiming to completely elucidate the As metabolic pathway would therefore benefit from incorporating the metabolic potency of human gut microbiota. This will result in more accurate risk characterization associated with As exposures.


Assuntos
Arsênio/metabolismo , Bactérias/metabolismo , Colo/microbiologia , Poluentes do Solo/metabolismo , Adulto , Arsenicais/metabolismo , Cromatografia Líquida de Alta Pressão , Fezes/microbiologia , Humanos , Técnicas In Vitro , Masculino , Espectrometria de Massas , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...