Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 3(1): 122, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993724

RESUMO

Ingestion of the cycad toxins ß-methylamino-L-alanine (BMAA) and azoxyglycosides is harmful to diverse organisms. However, some insects are specialized to feed on toxin-rich cycads with apparent immunity. Some cycad-feeding insects possess a common set of gut bacteria, which might play a role in detoxifying cycad toxins. Here, we investigated the composition of gut microbiota from a worldwide sample of cycadivorous insects and characterized the biosynthetic potential of selected bacteria. Cycadivorous insects shared a core gut microbiome consisting of six bacterial taxa, mainly belonging to the Proteobacteria, which we were able to isolate. To further investigate selected taxa from diverging lineages, we performed shotgun metagenomic sequencing of co-cultured bacterial sub-communities. We characterized the biosynthetic potential of four bacteria from Serratia, Pantoea, and two different Stenotrophomonas lineages, and discovered a suite of biosynthetic gene clusters notably rich in siderophores. Siderophore semi-untargeted metabolomics revealed a broad range of chemically related yet diverse iron-chelating metabolites, including desferrioxamine B, suggesting the occurrence of an unprecedented desferrioxamine-like biosynthetic pathway that remains to be identified. These results provide a foundation for future investigations into how cycadivorous insects tolerate diets rich in azoxyglycosides, BMAA, and other cycad toxins, including a possible role for bacterial siderophores.

2.
Sci Rep ; 12(1): 6013, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397634

RESUMO

[Formula: see text]-methylamino-L-alanine (BMAA) is a neurotoxic non-protein amino acid found in the tissues of cycad plants. The demonstrated toxicity of BMAA to diverse organisms, including humans, is widely assumed to imply a defensive function of BMAA against herbivores; however, this hypothesis has not previously been tested in an ecologically relevant system. We investigated the effects of dietary BMAA, across a range of dosages matching and exceeding levels typically present in cycad leaves, on the feeding preferences and performance of a generalist lepidopteran herbivore (Spodoptera littoralis).We observed no effects of dietary BMAA on the survival or development of S. littoralis larvae, nor any larval preference between BMAA-laced and control diets. These findings suggest that BMAA in cycad tissues does not deter feeding by insect herbivores, raising questions about other potential physiological or ecological functions of this compound.


Assuntos
Diamino Aminoácidos , Toxinas Biológicas , Diamino Aminoácidos/metabolismo , Animais , Toxinas de Cianobactérias , Cycadopsida/metabolismo , Humanos , Insetos/metabolismo , Neurotoxinas/toxicidade
3.
Proc Biol Sci ; 288(1950): 20202512, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33975481

RESUMO

Male butterflies in the hyperdiverse tribe Eumaeini possess an unusually complex and diverse repertoire of secondary sexual characteristics involved in pheromone production and dissemination. Maintaining multiple sexually selected traits is likely to be metabolically costly, potentially resulting in trade-offs in the evolution of male signals. However, a phylogenetic framework to test hypotheses regarding the evolution and maintenance of male sexual traits in Eumaeini has been lacking. Here, we infer a comprehensive, time-calibrated phylogeny from 379 loci for 187 species representing 91% of the 87 described genera. Eumaeini is a monophyletic group that originated in the late Oligocene and underwent rapid radiation in the Neotropics. We examined specimens of 818 of the 1096 described species (75%) and found that secondary sexual traits are present in males of 91% of the surveyed species. Scent pads and scent patches on the wings and brush organs associated with the genitalia were probably present in the common ancestor of Eumaeini and are widespread throughout the tribe. Brush organs and scent pads are negatively correlated across the phylogeny, exhibiting a trade-off in which lineages with brush organs are unlikely to regain scent pads and vice versa. In contrast, scent patches seem to facilitate the evolution of scent pads, although they are readily lost once scent pads have evolved. Our results illustrate the complex interplay between natural and sexual selection in the origin and maintenance of multiple male secondary sexual characteristics and highlight the potential role of sexual selection spurring diversification in this lineage.


Assuntos
Borboletas , Animais , Evolução Biológica , Masculino , Fenótipo , Feromônios , Filogenia
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547236

RESUMO

Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate Gq protein-coupled opsins function in a novel or convergent way compared to vertebrate Gt opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple Gq opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.


Assuntos
Borboletas/fisiologia , Visão de Cores/fisiologia , Evolução Molecular , Rodopsina/genética , Animais , Duplicação Gênica , Células HEK293 , Humanos , Células Fotorreceptoras de Invertebrados/metabolismo , Pigmentação/fisiologia , Característica Quantitativa Herdável , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rodopsina/metabolismo , Opsinas de Bastonetes/genética , Asas de Animais/fisiologia
5.
Ecol Lett ; 23(12): 1862-1877, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32969575

RESUMO

Cycads are an ancient group of tropical gymnosperms that are toxic to most animals - including humans - though the larvae of many moths and butterflies (order: Lepidoptera) feed on cycads with apparent immunity. These insects belong to distinct lineages with varying degrees of specialisation and diverse feeding ecologies, presenting numerous opportunities for comparative studies of chemically mediated eco-evolutionary dynamics. This review presents the first evolutionary evaluation of cycad-feeding among Lepidoptera along with a comprehensive review of their ecology. Our analysis suggests that multiple lineages have independently colonised cycads from angiosperm hosts, yet only a few clades appear to have radiated following their transitions to cycads. Defensive traits are likely important for diversification, as many cycad specialists are warningly coloured and sequester cycad toxins. The butterfly family Lycaenidae appears to be particularly predisposed to cycad-feeding and several cycadivorous lycaenids are warningly coloured and chemically defended. Cycad-herbivore interactions provide a promising but underutilised study system for investigating plant-insect coevolution, convergent and divergent adaptations, and the multi-trophic significance of defensive traits; therefore the review ends by suggesting specific research gaps that would be fruitfully addressed in Lepidoptera and other cycad-feeding insects.


Assuntos
Borboletas , Cycadopsida , Lepidópteros , Animais , Ecologia , Herbivoria , Insetos
6.
J Anim Ecol ; 89(3): 716-729, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31693172

RESUMO

Evading predators is a fundamental aspect of the ecology and evolution of all prey animals. In studying the influence of prey traits on predation risk, previous researchers have shown that crypsis reduces attack rates on resting prey, predation risk increases with increased prey activity, and rapid locomotion reduces attack rates and increases chances of surviving predator attacks. However, evidence for these conclusions is nearly always based on observations of selected species under artificial conditions. In nature, it remains unclear how defensive traits such as crypsis, activity levels and speed influence realized predation risk across species in a community. Whereas direct observations of predator-prey interactions in nature are rare, insight can be gained by quantifying bodily damage caused by failed predator attacks. We quantified how butterfly species traits affect predation risk in nature by determining how defensive traits correlate with wing damage caused by failed predation attempts, thereby providing the first robust multi-species comparative analysis of predator-induced bodily damage in wild animals. For 34 species of fruit-feeding butterflies in an African forest, we recorded wing damage and quantified crypsis, activity levels and flight speed. We then tested for correlations between damage parameters and species traits using comparative methods that account for measurement error. We detected considerable differences in the extent, location and symmetry of wing surface loss among species, with smaller differences between sexes. We found that males (but not females) of species that flew faster had substantially less wing surface loss. However, we found no correlation between cryptic coloration and symmetrical wing surface loss across species. In species in which males appeared to be more active than females, males had a lower proportion of symmetrical wing surface loss than females. Our results provide evidence that activity greatly influences the probability of attacks and that flying rapidly is effective for escaping pursuing predators in the wild, but we did not find evidence that cryptic species are less likely to be attacked while at rest.


Assuntos
Borboletas , Animais , Feminino , Locomoção , Masculino , Comportamento Predatório , Asas de Animais
7.
PLoS One ; 14(7): e0219070, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329604

RESUMO

Knowing what animals eat is fundamental to our ability to understand and manage biodiversity and ecosystems, but researchers often must rely on indirect methods to infer trophic position and food intake. Using an approach that combines evidence from stable isotope analysis and DNA metabarcoding, we assessed the diet and trophic position of Anthene usamba butterflies, for which there are no known direct observations of larval feeding. An earlier study that analyzed adults rather than caterpillars of A. usamba inferred that this butterfly was aphytophagous, but we found that the larval guts of A. usamba and two known herbivorous lycaenid species contain chloroplast 16S sequences. Moreover, chloroplast barcoding revealed high sequence similarity between chloroplasts found in A. usamba guts and the chloroplasts of the Vachellia drepanolobium trees on which the caterpillars live. Stable isotope analysis provided further evidence that A. usamba caterpillars feed on V. drepanolobium, and the possibilities of strict herbivory versus limited omnivory in this species are discussed. These results highlight the importance of combining multiple approaches and considering ontogeny when using stable isotopes to infer trophic ecology where direct observations are difficult or impossible.


Assuntos
Borboletas/fisiologia , Dieta , Ecossistema , Animais , Formigas/fisiologia , Isótopos de Carbono , Código de Barras de DNA Taxonômico , DNA de Cloroplastos/genética , DNA de Cloroplastos/isolamento & purificação , Fabaceae/química , Fabaceae/genética , Microbioma Gastrointestinal/genética , Herbivoria/genética , Larva/fisiologia , Isótopos de Nitrogênio , Simbiose
8.
Ecol Evol ; 9(8): 4452-4464, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031919

RESUMO

Bacterial symbionts are known to facilitate a wide range of physiological processes and ecological interactions for their hosts. In spite of this, caterpillars with highly diverse life histories appear to lack resident microbiota. Gut physiology, endogenous digestive enzymes, and limited social interactions may contribute to this pattern, but the consequences of shifts in social activity and diet on caterpillar microbiota are largely unknown. Phengaris alcon caterpillars undergo particularly dramatic social and dietary shifts when they parasitize Myrmica ant colonies, rapidly transitioning from solitary herbivory to ant tending (i.e., receiving protein-rich regurgitations through trophallaxis). This unique life history provides a model for studying interactions between social living, diet, and caterpillar microbiota. Here, we characterized and compared bacterial communities within P. alcon caterpillars before and after their association with ants, using 16S rRNA amplicon sequencing and quantitative PCR. After being adopted by ants, bacterial communities within P. alcon caterpillars shifted substantially, with a significant increase in alpha diversity and greater consistency in bacterial community composition in terms of beta dissimilarity. We also characterized the bacterial communities within their host ants (Myrmica schencki), food plant (Gentiana cruciata), and soil from ant nest chambers. These data indicated that the aforementioned patterns were influenced by bacteria derived from caterpillars' surrounding environments, rather than through transfers from ants. Thus, while bacterial communities are substantially reorganized over the life cycle of P. alcon caterpillars, it appears that they do not rely on transfers of bacteria from host ants to complete their development.

9.
Front Microbiol ; 7: 1920, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965647

RESUMO

Herbivores possess many counteradaptations to plant defenses, and a growing body of research describes the role of symbiotic gut bacteria in mediating herbivorous diets among insects. However, persistent bacterial symbioses have not been found in Lepidoptera, despite the fact that perhaps 99% of the species in this order are herbivorous. We surveyed bacterial communities in the guts of larvae from 31 species of lycaenid butterflies whose caterpillars had diets ranging from obligate carnivory to strict herbivory. Contrary to our expectations, we found that the bacterial communities of carnivorous and herbivorous caterpillars do not differ in richness, diversity, or composition. Many of the observed bacterial genera are commonly found in soil and plant surfaces, and we detected known homopteran endosymbionts in the guts of homopterophagous species, suggesting that larvae acquire gut bacteria from their food and environment. These results indicate that lycaenid butterflies do not rely on specific bacterial symbioses to mediate their diverse diets, and provide further evidence of taxonomically depauperate bacterial communities among Lepidoptera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...