Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 61(3): 1845-1859, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37792259

RESUMO

Chronic pain is a significant public health issue that is often refractory to existing therapies. Here we use a multiomic approach to identify cis-regulatory elements that show differential chromatin accessibility and reveal transcription factor (TF) binding motifs with functional regulation in the rat dorsal root ganglion (DRG), which contain cell bodies of primary sensory neurons, after nerve injury. We integrated RNA-seq to understand how differential chromatin accessibility after nerve injury may influence gene expression. Using TF protein arrays and chromatin immunoprecipitation-qPCR, we confirmed C/EBPγ binding to a differentially accessible sequence and used RNA-seq to identify processes in which C/EBPγ plays an important role. Our findings offer insights into TF motifs that are associated with chronic pain. These data show how interactions between chromatin landscapes and TF expression patterns may work together to determine gene expression programs in rat DRG neurons after nerve injury.


Assuntos
Dor Crônica , Neuralgia , Ratos , Animais , Ratos Sprague-Dawley , Dor Crônica/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriais/metabolismo , Cromatina/metabolismo , Gânglios Espinais/metabolismo
2.
Nanomaterials (Basel) ; 12(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335749

RESUMO

Nanosized materials have been proposed for a wide range of biomedical applications, given their unique characteristics. However, how these nanomaterials interact with cells and tissues, as well as how they bio-distribute in organisms, is still under investigation. Differences such as the nanoparticle size, shape, and surface chemistry affect the basic mechanisms of cellular uptake and responses, which, in turn, affects the nanoparticles' applicability for biomedical applications. Thus, it is vital to determine how a specific nanoparticle interacts with cells of interest before extensive in vivo applications are performed. Here, we delineate the uptake mechanism and localization of gold nanorods in SKBR-3 and MCF-7 breast cancer cell lines. Our results show both differences and similarities in the nanorod-cell interactions of the two cell lines. We accurately quantified the cellular uptake of gold nanorods in SKBR-3 and MCF-7 using inductively coupled plasma mass spectrometry (ICP-MS). We found that both cell types use macropinocytosis to internalize bare nanorods that aggregate and associate with the cell membrane. In addition, we were able to qualitatively track and show intracellular nanoparticle localization using transmission electron microscopy. The results of this study will be invaluable for the successful development of novel and "smart" nanodrugs based on gold nano-structural delivery vehicles, which heavily depend on their complex interactions with single cells.

3.
Adv Biol Regul ; 84: 100861, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35121409

RESUMO

The CCAAT enhancer binding protein (C/EBP) family of transcription factors are important transcriptional mediators of a wide range of physiologic processes. C/EBP-γ is the shortest C/EBP protein and lacks a canonical activation domain for the recruitment of transcriptional machinery. Despite its ubiquitous expression and ability to dimerize with other C/EBP proteins, C/EBP-γ has been studied far less than other C/EBP proteins, and, to our knowledge, no review of its functions has been written. This review seeks to integrate the current knowledge about C/EBP-γ and its physiologic roles, especially in cell proliferation, the integrated stress response, oncogenesis, hematopoietic and nervous system development, and metabolism, as well as to identify areas for future research.


Assuntos
Fatores de Transcrição , Transcrição Gênica , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo
4.
Tob Induc Dis ; 16: 50, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31516447

RESUMO

INTRODUCTION: Resveratrol (trans-3, 4', 5-trihydroxystilbene), a phytoalexin derived from the skin of grapes and other fruits, has anti-inflammatory and anti-oxidant effects. Its anti-carcinogenic effects are closely associated with its antioxidant activity; thus, the use of resveratrol as a possible cancer chemo-preventive is considered to be an important area of investigation. In this study we have examined the inhibitory effects of resveratrol in nicotine induced proliferation of pancreatic cancer cells. METHODS: Cultured AR42J cells were incubated with 100 µM nicotine for 3 min and with 100 µM resveratrol for 30 min, either alone or in combination. Proliferation assays were conducted for a period of 0 to 96 h in serum media, incubated with nicotine and resveratrol, and evaluated by MTT assay. Protein was measured in lysed cells and activation of MAPK signals was measured by western blot using purified p-ERK antibody. Co-localization of activated ERK signals was confirmed by FITC conjugated ERK antibody using immunofluorescence assay and confocal microscopy. Biomarker of lipid peroxidation was determined in cell lysates by malondialdehyde (MDA) bioassay. RESULTS: Resveratrol significantly suppressed the nicotine-induced proliferation of acinar cells compared to untreated controls (p<0.05). Mitogen activated protein kinase (MAPK) analysis revealed up-regulation of p-ERK expression by nicotine (p<0.05) that was suppressed significantly by resveratrol (p<0.05). Co-localization of activated ERK signals was confirmed by FITC conjugated ERK antibody, and this response was reduced significantly by resveratrol. Nicotine-induced malondialdehyde formation was also suppressed by resveratrol (p<0.05). CONCLUSIONS: The data suggest that resveratrol suppressed nicotine-induced AR42J cell proliferation. The proliferation of AR42J cells by nicotine is associated with activation of MAPK signals and induction of protein oxidation. Resveratrol suppressed lipid peroxidation and P-ERK activated signals induced by nicotine. We conclude that resveratrol acts as an effective antioxidant in reversing the nicotine induced pancreatic cancer cell proliferation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...