Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29552677

RESUMO

The non-mevalonate dependent (NMVA) pathway for the biosynthesis of isopentenyl pyrophosphate and dimethylallyl pyrophosphate is the sole source of these terpenoids for the production of isoprenoids in the apicomplexan parasites, in many eubacteria, and in plants. The absence of this pathway in higher organisms has opened a new platform for the development of novel antibiotics and anti-malarials. The enzyme catalyzing the first step of the NMVA pathway is 1-deoxy-D-xylulose-5-phosphate synthase (DXPS). DXPS catalyzes the thiamine pyrophosphate- and Mg (II)-dependent conjugation of pyruvate and D-glyceraldehyde-3-phosphate to form 1-deoxy-D-xylulose-5-phosphate and CO2. The kinetic mechanism of DXPS from Deinococcus radiodurans most consistent with our data is random sequential as shown using a combination of kinetic analysis and product and dead-end inhibition studies. The role of active site amino acids, identified by sequence alignment to other DXPS proteins, was probed by constructing and analyzing the catalytic efficacy of a set of targeted site-directed mutants.

2.
J Phys Chem B ; 120(37): 9922-34, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27537621

RESUMO

1-Deoxy-d-xylulose 5-phosphate synthase (DXS) is a thiamin diphosphate (TDP) dependent enzyme that marks the beginning of the methylerythritol 4-phosphate isoprenoid biosynthesis pathway. The mechanism of action for DXS is still poorly understood and begins with the formation of a thiazolium ylide. This TDP activation step is thought to proceed through an intramolecular deprotonation by the 4'-aminopyrimidine ring of TDP; however, this step would occur only after an initial deprotonation of its own 4'-amino group. The mechanism of the initial deprotonation has been hypothesized, by analogy to transketolases, to occur via a histidine or an active site water molecule. Results from hybrid quantum mechanical/molecular mechanical (QM/MM) reaction path calculations reveal an ∼10 kcal/mol difference in transition state energies, favoring a water mediated mechanism over direct deprotonation by histidine. This difference was determined to be largely governed by electrostatic changes induced by conformational variations in the active site. Additionally, mutagenesis studies reveal DXS to be an evolutionarily resilient enzyme. Particularly, we hypothesize that residues H82 and H304 may act in a compensatory fashion if the other is lost due to mutation. Further, nucleus-independent chemical shifts (NICSs) and aromatic stabilization energy (ASE) calculations suggest that reduction in TDP aromaticity also serves as a factor for regulating ylide formation and controlling reactivity.


Assuntos
Difosfatos/metabolismo , Tiamina/metabolismo , Transferases/metabolismo , Deinococcus/enzimologia , Difosfatos/química , Conformação Molecular , Teoria Quântica , Tiamina/química , Transferases/química
3.
Biochim Biophys Acta ; 1850(5): 944-953, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25239198

RESUMO

BACKGROUND: Accurately modeling condensed phase processes is one of computation's most difficult challenges. Include the possibility that conformational dynamics may be coupled to chemical reactions, where multiscale (i.e., QM/MM) methods are needed, and this task becomes even more daunting. METHODS: Free energy simulations (i.e., molecular dynamics), multiscale modeling, and reweighting schemes. RESULTS: Herein, we present two new approaches for mitigating the aforementioned challenges. The first is a new chain-of-replica method (off-path simulations, OPS) for computing potentials of mean force (PMFs) along an easily defined reaction coordinate. This development is coupled with a new distributed, highly-parallel replica framework (REPDstr) within the CHARMM package. Validation of these new schemes is carried out on two processes that undergo conformational changes. First is the simple torsional rotation of butane, while a much more challenging glycosidic rotation (in vacuo and solvated) is the second. Additionally, a new approach that greatly improves (i.e., possibly an order of magnitude) the efficiency of computing QM/MM PMFs is introduced and compared to standard schemes. Our efforts are grounded in the recently developed method for efficiently computing QM-based free energies (i.e., QM-Non-Boltzmann Bennett, QM-NBB). Again, we validate this new technique by computing the QM/MM PMF of butane's torsional rotation. CONCLUSIONS: The OPS-REPDstr method is a promising new approach that overcomes many limitations of standard pathway simulations in CHARMM. The combination of QM-NBB with pathway techniques is very promising as it offers significant advantages over current procedures. GENERAL SIGNIFICANCE: Efficiently computing potentials of mean force is a major, unresolved, area of interest. This article is part of a Special Issue entitled Recent developments of molecular dynamics.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Butanos/química , Configuração de Carboidratos , Transferência de Energia , Maltose/química , Estrutura Molecular , Reprodutibilidade dos Testes , Rotação , Solventes/química , Torção Mecânica
4.
J Chem Theory Comput ; 10(2): 855-864, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24803854

RESUMO

Bacterial resistance to standard (i.e., ß-lactam-based) antibiotics has become a global pandemic. Simultaneously, research into the underlying causes of resistance has slowed substantially, although its importance is universally recognized. Key to unraveling critical details is characterization of the noncovalent interactions that govern binding and specificity (DD-peptidases, antibiotic targets, versus ß-lactamases, the evolutionarily derived enzymes that play a major role in resistance) and ultimately resistance as a whole. Herein, we describe a detailed investigation that elicits new chemical insights into these underlying intermolecular interactions. Benzylpenicillin and a novel ß-lactam peptidomimetic complexed to the Stremptomyces R61 peptidase are examined using an arsenal of computational techniques: MD simulations, QM/MM calculations, charge perturbation analysis, QM/MM orbital analysis, bioinformatics, flexible receptor/flexible ligand docking, and computational ADME predictions. Several key molecular level interactions are identified that not only shed light onto fundamental resistance mechanisms, but also offer explanations for observed specificity. Specifically, an extended π-π network is elucidated that suggests antibacterial resistance has evolved, in part, due to stabilizing aromatic interactions. Additionally, interactions between the protein and peptidomimetic substrate are identified and characterized. Of particular interest is a water-mediated salt bridge between Asp217 and the positively charged N-terminus of the peptidomimetic, revealing an interaction that may significantly contribute to ß-lactam specificity. Finally, interaction information is used to suggest modifications to current ß-lactam compounds that should both improve binding and specificity in DD-peptidases and their physiochemical properties.

5.
J Chem Inf Model ; 54(5): 1412-24, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24697903

RESUMO

Benzylpenicillin, a member of the ß-lactam antibiotic class, has been widely used to combat bacterial infections since 1947. The general mechanism is well-known: a serine protease enzyme (i.e., DD-peptidase) forms a long lasting intermediate with the lactam ring of the antibiotic known as acylation, effectively preventing biosynthesis of the bacterial cell wall. Despite this overall mechanistic understanding, many details of binding and catalysis are unclear. Specifically, there is ongoing debate about active site protonation states and the role of general acids/bases in the reaction. Herein, a unique combination of MD simulations, QM/MM minimizations, and QM/MM orbital analyses is combined with systematic variation of active site residue protonation states. Critical interactions that maximize the stability of the bound inhibitor are examined and used as metrics. This approach was validated by examining cefoxitin interactions in the CTX-M ß-lactamase from E. coli and compared to an ultra high-resolution (0.88 Å) crystal structure. Upon confirming the approach used, an investigation of the preacylated Streptomyces R61 active site with bound benzylpenicillin was performed, varying the protonation states of His298 and Lys65. We concluded that protonated His298 and deprotonated Lys65 are most likely to exist in the R61 active site.


Assuntos
Simulação de Dinâmica Molecular , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Prótons , Teoria Quântica , Conformação Proteica , Estabilidade Proteica , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...