Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611969

RESUMO

The failure mechanism of thermal gate oxide in silicon carbide (SiC) power metal oxide semiconductor field effect transistors (MOSFETs), whether it is field-driven breakdown or charge-driven breakdown, has always been a controversial topic. Previous studies have demonstrated that the failure time of thermally grown silicon dioxide (SiO2) on SiC stressed with a constant voltage is indicated as charge driven rather than field driven through the observation of Weibull Slope ß. Considering the importance of the accurate failure mechanism for the thermal gate oxide lifetime prediction model of time-dependent dielectric breakdown (TDDB), charge-driven breakdown needs to be further fundamentally justified. In this work, the charge-to-breakdown (QBD) of the thermal gate oxide in a type of commercial planar SiC power MOSFETs, under the constant current stress (CCS), constant voltage stress (CVS), and pulsed voltage stress (PVS) are extracted, respectively. A mathematical electron trapping model in thermal SiO2 grown on single crystal silicon (Si) under CCS, which was proposed by M. Liang et al., is proven to work equally well with thermal SiO2 grown on SiC and used to deduce the QBD model of the device under test (DUT). Compared with the QBD obtained under the three stress conditions, the charge-driven breakdown mechanism is validated in the thermal gate oxide of SiC power MOSFETs.

2.
Micromachines (Basel) ; 15(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38398907

RESUMO

The body diode degradation in SiC power MOSFETs has been demonstrated to be caused by basal plane dislocation (BPD)-induced stacking faults (SFs) in the drift region. To enhance the reliability of the body diode, many process and structural improvements have been proposed to eliminate BPDs in the drift region, ensuring that commercial SiC wafers for 1.2 kV devices are of high quality. Thus, investigating the body diode reliability in commercial planar and trench SiC power MOSFETs made from SiC wafers with similar quality has attracted attention in the industry. In this work, current stress is applied on the body diodes of 1.2 kV commercial planar and trench SiC power MOSFETs under the off-state. The results show that the body diodes of planar and trench devices with a shallow P+ depth are highly reliable, while those of the trench devices with the deep P+ implantation exhibit significant degradation. In conclusion, the body diode degradation in trench devices is mainly influenced by P+ implantation-induced BPDs. Therefore, a trade-off design by controlling the implantation depth/dose and maximizing the device performance is crucial. Moreover, the deep JFET design is confirmed to further improve the body diode reliability in planar devices.

3.
Materials (Basel) ; 15(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234032

RESUMO

A new cell topology named the dodecagonal (a polygon with twelve sides, short for Dod) cell is proposed to optimize the gate-to-drain capacitance (Cgd) and reduce the specific ON-resistance (Ron,sp) of 4H-SiC planar power MOSFETs. The Dod and the octagonal (Oct) cells are used in the layout design of the 650 V SiC MOSFETs in this work. The experimental results confirm that the Dod-cell MOSFET achieves a 2.2× lower Ron,sp, 2.1× smaller high-frequency figure of merit (HF-FOM), higher turn on/off dv/dt, and 29% less switching loss than the fabricated Oct-cell MOSFET. The results demonstrate that the Dod cell is an attractive candidate for high-frequency power applications.

4.
Materials (Basel) ; 15(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36079378

RESUMO

650 V SiC planar MOSFETs with various JFET widths, JFET doping concentrations, and gate oxide thicknesses were fabricated by a commercial SiC foundry on two six-inch SiC epitaxial wafers. An orthogonal P+ layout was used for the 650 V SiC MOSFETs to reduce the ON-resistance. The devices were packaged into open-cavity TO-247 packages for evaluation. Trade-off analysis of the static and dynamic performance of the 650 V SiC power MOSFETs was conducted. The measurement results show that a short JFET region with an enhanced JFET doping concentration reduces specific ON-resistance (Ron,sp) and lowers the gate-drain capacitance (Cgd). It was experimentally shown that a thinner gate oxide further reduces Ron,sp, although with a penalty in terms of increased Cgd. A design with 0.5 µm half JFET width, enhanced JFET doping concentration of 5.5×1016 cm-3, and thin gate oxide produces an excellent high-frequency figure of merit (HF-FOM) among recently published studies on 650 V SiC devices.

5.
Comput Methods Programs Biomed ; 85(1): 1-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17112631

RESUMO

Computer simulations of realistic ion channel structures have always been challenging and a subject of rigorous study. Simulations based on continuum electrostatics have proven to be computationally cheap and reasonably accurate in predicting a channel's behavior. In this paper we discuss the use of a device simulator, SILVACO, to build a solid-state model for KcsA channel and study its steady-state response. SILVACO is a well-established program, typically used by electrical engineers to simulate the process flow and electrical characteristics of solid-state devices. By employing this simulation program, we have presented an alternative computing platform for performing ion channel simulations, besides the known methods of writing codes in programming languages. With the ease of varying the different parameters in the channel's vestibule and the ability of incorporating surface charges, we have shown the wide-ranging possibilities of using a device simulator for ion channel simulations. Our simulated results closely agree with the experimental data, validating our model.


Assuntos
Desenho Assistido por Computador , Canais Iônicos/fisiologia
6.
J Neurosci Methods ; 120(2): 131-43, 2002 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-12385763

RESUMO

Neuronal modeling of patch-clamp data is based on approximations which are valid under specific assumptions regarding cell properties and morphology. Certain cells, which show a biexponential capacitance transient decay, can be modeled with a two-compartment model. However, for parameter-extraction in such a model, approximations are required regarding the relative sizes of the various model parameters. These approximations apply to certain cell types or experimental conditions and are not valid in the general case. In this paper, we present a general method for the extraction of the parameters in a two-compartment model without assumptions regarding the relative size of the parameters. All the passive electrical parameters of the two-compartment model are derived in terms of the available experimental data. The experimental data is obtained from a DC measurement (where the command potential is a hyperpolarizing DC voltage) and an AC measurement (where the command potential is a sinusoidal stimulus on a hyperpolarized DC potential) performed on the cell under test. Computer simulations are performed with a circuit simulator, XSPICE, to observe the effects of varying the two-compartment model parameters on the capacitive transients of the current response. Our general solution for the parameter-estimation of a two-compartment model may be used to model any neuron, which has a biexponential capacitive current decay. In addition, our model avoids the need for simplifying and perhaps erroneous approximations. Our equations may be easily implemented in hardware/software compensation schemes to correct the recorded currents for any series resistance or capacitive transient errors. Our general solution reduces to the results of previous researchers under their approximations.


Assuntos
Algoritmos , Fenômenos Fisiológicos Celulares , Eletrofisiologia/estatística & dados numéricos , Modelos Estatísticos , Simulação por Computador , Interpretação Estatística de Dados , Estimulação Elétrica , Modelos Neurológicos , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...