Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(24): e0148422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453885

RESUMO

Adeno-associated virus (AAV) is a small ssDNA satellite virus of high interest (in recombinant form) as a safe and effective gene therapy vector. AAV's human cell entry receptor (AAVR) contains polycystic kidney disease (PKD) domains bound by AAV. Seeking understanding of the spectrum of interactions, goat AAVGo.1 is investigated, because its host is the species most distant from human with reciprocal cross-species cell susceptibility. The structure of AAVGo.1, solved by cryo-EM to 2.9 Å resolution, is most similar to AAV5. Through ELISA (enzyme-linked immunosorbent assay) studies, it is shown that AAVGo.1 binds to human AAVR more strongly than do AAV2 or AAV5, and that it joins AAV5 in a class that binds exclusively to PKD domain 1 (PKD1), in contrast to other AAVs that interact primarily with PKD2. The AAVGo.1 cryo-EM structure of a complex with a PKD12 fragment of AAVR at 2.4 Å resolution shows PKD1 bound with minimal change in virus structure. There are only minor conformational adaptations in AAVR, but there is a near-rigid rotation of PKD1 with maximal displacement of the receptor domain by ~1 Å compared to PKD1 bound to AAV5. AAVGo.1 joins AAV5 as the second member of an emerging class of AAVs whose mode of receptor-binding is completely different from other AAVs, typified by AAV2. IMPORTANCE Adeno-associated virus (AAV) is a small ssDNA satellite parvovirus. As a recombinant vector with a protein shell encapsidating a transgene, recombinant AAV (rAAV) is a leading delivery vehicle for gene therapy, with two FDA-approved treatments and 150 clinical trials for 30 diseases. The human entry receptor AAVR has five PKD domains. To date, all serotypes, except AAV5, have interacted primarily with the second PKD domain, PKD2. Goat is the AAV host most distant from human with cross-species cell infectivity. AAVGo.1 is similar in structure to AAV5, the two forming a class with a distinct mode of receptor-binding. Within the two classes, binding interactions are mostly conserved, giving an indication of the latitude available in modulating delivery vectors.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Humanos , Dependovirus/metabolismo , Dependovirus/ultraestrutura , Vetores Genéticos/química , Vetores Genéticos/genética , Cabras , Ligação Proteica , Terapia Genética/métodos
2.
Elife ; 112022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36173096

RESUMO

Candida albicans causes severe invasive candidiasis. C. albicans infection requires the virulence factor candidalysin (CL) which damages target cell membranes. However, the mechanism that CL uses to permeabilize membranes is unclear. We reveal that CL forms membrane pores using a unique mechanism. Unexpectedly, CL readily assembled into polymers in solution. We propose that the basic structural unit in polymer formation is a CL oligomer, which is sequentially added into a string configuration that can close into a loop. CL loops appear to spontaneously insert into the membrane to become pores. A CL mutation (G4W) inhibited the formation of polymers in solution and prevented pore formation in synthetic lipid systems. Epithelial cell studies showed that G4W CL failed to activate the danger response pathway, a hallmark of the pathogenic effect of CL. These results indicate that CL polymerization in solution is a necessary step for the damage of cellular membranes. Analysis of CL pores by atomic force microscopy revealed co-existence of simple depressions and more complex pores, which are likely formed by CL assembled in an alternate oligomer orientation. We propose that this structural rearrangement represents a maturation mechanism that stabilizes pore formation to achieve more robust cellular damage. To summarize, CL uses a previously unknown mechanism to damage membranes, whereby pre-assembly of CL loops in solution leads to formation of membrane pores. Our investigation not only unravels a new paradigm for the formation of membrane pores, but additionally identifies CL polymerization as a novel therapeutic target to treat candidiasis.


The fungus Candida albicans is the most common cause of yeast infections in humans. Like many other disease-causing microbes, it releases several virulent proteins that invade and damage human cells. This includes the peptide candidalysin which has been shown to be crucial for infection. Human cells are surrounded by a protective membrane that separates their interior from their external environment. Previous work showed that candidalysin damages the cell membrane to promote infection. However, how candidalysin does this remained unclear. Similar peptides and proteins cause harm by inserting themselves into the membrane and then grouping together to form a ring. This creates a hole, or 'pore', that weakens the membrane and allows other molecules into the cell's interior. Here, Russell, Schaefer et al. show that candidalysin uses a unique pore forming mechanism to impair the membrane of human cells. A combination of biophysical and cell biology techniques revealed that the peptide groups together to form a chain. This chain of candidalysin proteins then closes in on itself to create a loop structure that can insert into the membrane to form a pore. Once embedded within the membrane, the proteins within the loops rearrange again to make the pores more stable so they can cause greater damage. This type of pore formation has not been observed before, and may open up new avenues of research. For instance, researchers could use this information to develop inhibitors that stop candidalysin from forming chains and harming the membranes of cells. This could help treat the infections caused by C. albicans.


Assuntos
Candida albicans , Fatores de Virulência , Candida albicans/genética , Células Epiteliais/metabolismo , Proteínas Fúngicas , Lipídeos , Polímeros/metabolismo , Fatores de Virulência/metabolismo
3.
ACS Omega ; 6(13): 8986-9000, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33842769

RESUMO

Atomic layer deposition (ALD) provides uniform and conformal thin films that are of interest for a range of applications. To better understand the properties of amorphous ALD films, we need an improved understanding of their local atomic structure. Previous work demonstrated measurement of how the local atomic structure of ALD-grown aluminum oxide (AlO x ) evolves in operando during growth by employing synchrotron high-energy X-ray diffraction (HE-XRD). In this work, we report on efforts to employ electron diffraction pair distribution function (ePDF) measurements using more broadly available transmission electron microscope (TEM) instrumentation to study the atomic structure of amorphous ALD-AlO x . We observe electron beam damage in the ALD-coated samples during ePDF at ambient temperature and successfully mitigate this beam damage using ePDF at cryogenic temperatures (cryo-ePDF). We employ cryo-ePDF and reverse Monte Carlo (RMC) modeling to obtain structural models of ALD-AlO x coatings formed at a range of deposition temperatures from 150 to 332 °C. From these model structures, we derive structural metrics including stoichiometry, pair distances, and coordination environments in the ALD-AlO x films as a function of deposition temperature. The structural variations we observe with growth temperature are consistent with temperature-dependent changes in the surface hydroxyl density on the growth surface. The sample preparation and cryo-ePDF procedures we report here can be used for the routine measurement of ALD-grown amorphous thin films to improve our understanding of the atomic structure of these materials, establish structure-property relationships, and help accelerate the timescale for the application of ALD to address technological needs.

4.
BMC Bioinformatics ; 22(1): 55, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557750

RESUMO

BACKGROUND: Identification and selection of protein particles in cryo-electron micrographs is an important step in single particle analysis. In this study, we developed a deep learning-based particle picking network to automatically detect particle centers from cryoEM micrographs. This is a challenging task due to the nature of cryoEM data, having low signal-to-noise ratios with variable particle sizes, shapes, distributions, grayscale variations as well as other undesirable artifacts. RESULTS: We propose a double convolutional neural network (CNN) cascade for automated detection of particles in cryo-electron micrographs. This approach, entitled Deep Regression Picker Network or "DRPnet", is simple but very effective in recognizing different particle sizes, shapes, distributions and grayscale patterns corresponding to 2D views of 3D particles. Particles are detected by the first network, a fully convolutional regression network (FCRN), which maps the particle image to a continuous distance map that acts like a probability density function of particle centers. Particles identified by FCRN are further refined to reduce false particle detections by the second classification CNN. DRPnet's first CNN pretrained with only a single cryoEM dataset can be used to detect particles from different datasets without retraining. Compared to RELION template-based autopicking, DRPnet results in better particle picking performance with drastically reduced user interactions and processing time. DRPnet also outperforms the state-of-the-art particle picking networks in terms of the supervised detection evaluation metrics recall, precision, and F-measure. To further highlight quality of the picked particle sets, we compute and present additional performance metrics assessing the resulting 3D reconstructions such as number of 2D class averages, efficiency/angular coverage, Rosenthal-Henderson plots and local/global 3D reconstruction resolution. CONCLUSION: DRPnet shows greatly improved time-savings to generate an initial particle dataset compared to manual picking, followed by template-based autopicking. Compared to other networks, DRPnet has equivalent or better performance. DRPnet excels on cryoEM datasets that have low contrast or clumped particles. Evaluating other performance metrics, DRPnet is useful for higher resolution 3D reconstructions with decreased particle numbers or unknown symmetry, detecting particles with better angular orientation coverage.


Assuntos
Microscopia Crioeletrônica , Elétrons , Processamento de Imagem Assistida por Computador , Análise de Regressão , Imageamento Tridimensional , Redes Neurais de Computação , Proteínas , Razão Sinal-Ruído
5.
Viruses ; 12(11)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218165

RESUMO

Adeno-Associated Virus is the leading vector for gene therapy. Although it is the vector for all in vivo gene therapies approved for clinical use by the US Food and Drug Administration, its biology is still not yet fully understood. It has been shown that different serotypes of AAV bind to their cellular receptor, AAVR, in different ways. Previously we have reported a 2.4Å structure of AAV2 bound to AAVR that shows ordered structure for only one of the two AAVR domains with which AAV2 interacts. In this study we present a 2.5Å resolution structure of AAV5 bound to AAVR. AAV5 binds to the first polycystic kidney disease (PKD) domain of AAVR that was not ordered in the AAV2 structure. Interactions of AAV5 with AAVR are analyzed in detail, and the implications for AAV2 binding are explored through molecular modeling. Moreover, we find that binding sites for the antibodies ADK5a, ADK5b, and 3C5 on AAV5 overlap with the binding site of AAVR. These insights provide a structural foundation for development of gene therapy agents to better evade immune neutralization without disrupting cellular entry.


Assuntos
Dependovirus/química , Terapia Genética , Vetores Genéticos/imunologia , Receptores de Superfície Celular/química , Animais , Sítios de Ligação , Linhagem Celular , Microscopia Crioeletrônica , Dependovirus/imunologia , Humanos , Evasão da Resposta Imune , Insetos , Modelos Moleculares , Testes de Neutralização , Doenças Renais Policísticas/genética , Ligação Proteica , Sorogrupo , Células Sf9 , Internalização do Vírus
6.
Sci Rep ; 9(1): 17070, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745164

RESUMO

Red mineral pigment use is recognized as a fundamental component of a series of traits associated with human evolutionary development, social interaction, and behavioral complexity. Iron-enriched mineral deposits have been collected and prepared as pigment for use in rock art, personal adornment, and mortuary practices for millennia, yet little is known about early developments in mineral processing techniques in North America. Microanalysis of rock art pigments from the North American Pacific Northwest reveals a sophisticated use of iron oxide produced by the biomineralizing bacterium Leptothrix ochracea; a keystone species of chemolithotroph recognized in recent advances in the development of thermostable, colorfast biomaterial pigments. Here we show evidence for human engagement with this bacterium, including nanostructural and magnetic properties evident of thermal enhancement, indicating that controlled use of pyrotechnology was a key feature of how biogenic iron oxides were prepared into paint. Our results demonstrate that hunter-gatherers in this area of study prepared pigments by harvesting aquatic microbial iron mats dominated by iron-oxidizing bacteria, which were subsequently heated in large open hearths at a controlled range of 750 °C to 850 °C. This technical gesture was performed to enhance color properties, and increase colorfastness and resistance to degradation. This skilled production of highly thermostable and long-lasting rock art paint represents a specialized technological innovation. Our results contribute to a growing body of knowledge on historical-ecological resource use practices in the Pacific Northwest during the Late Holocene.Figshare link to figures: https://figshare.com/s/9392a0081632c20e9484.


Assuntos
Corantes/química , Compostos Férricos/análise , Ferro/análise , Leptothrix/metabolismo , Paleontologia/métodos , Arte , Humanos , América do Norte , Oxirredução , Pintura/microbiologia
7.
Int J Mol Sci ; 20(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248079

RESUMO

The chemotactic sensory system enables motile bacteria to move toward favorable environments. Throughout bacterial diversity, the chemoreceptors that mediate chemotaxis are clustered into densely packed arrays of signaling complexes. In these arrays, rod-shaped receptors are in close proximity, resulting in limited options for orientations. A recent geometric analysis of these limitations in Escherichia coli, using published dimensions and angles, revealed that in this species, straight chemoreceptors would not fit into the available space, but receptors bent at one or both of the recently-documented flexible hinges would fit, albeit over a narrow window of shallow bend angles. We have now expanded our geometric analysis to consider variations in receptor length, orientation and placement, and thus to species in which those parameters are known to be, or might be, different, as well as to the possibility of dynamic variation in those parameters. The results identified significant limitations on the allowed combinations of chemoreceptor dimensions, orientations and placement. For most combinations, these limitations excluded straight chemoreceptors, but allowed receptors bent at a flexible hinge. Thus, our analysis identifies across bacterial diversity a crucial role for chemoreceptor flexible hinges, in accommodating the limitations of molecular crowding in chemotaxis core signaling complexes and their arrays.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Quimiotaxia , Proteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas de Bactérias/química , Proteínas de Membrana/química , Modelos Biológicos , Ligação Proteica , Multimerização Proteica , Relação Estrutura-Atividade
8.
Vet Ophthalmol ; 22(5): 614-622, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30716201

RESUMO

OBJECTIVES: To serially evaluate morphologic and elemental composition changes to diamond burr tips (DBTs) comparing two sterilization protocols. ANIMALS STUDIED: A total of 300 fresh cadaver porcine globes. PROCEDURES: Six DBTs were randomly, equally assigned into Group 1 or 2, and then analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) at 0, 25, 50, and 100 cycles. Diamond burr debridement (DBD) was performed for 120 seconds on corneal stroma using the Algerbrush®. DBTs were cleaned, and then: Group 1 was sterilized by Germinator 500™; and Group 2 underwent ultrasonic cleaning and pre-vacuum autoclave. A cycle is defined as one DBD, cleaning and sterilization protocol. Data were quantified using custom MatLab program. RESULTS: Energy Dispersive Spectroscopy revealed minor buildup of sulfur on both groups. Group 1 displayed major buildup of carbon and calcium. All DBTs were stippled with inorganic particulate at baseline. Particulates were no longer present on Group 2 by 25 cycles, but remained on Group 1 at all time points. There was significantly more buildup on Group 1 at all time points (P = 0.0000, 0.0009, and 0.0003 for 25, 50, and 100 cycles, respectively). More damage to Group 2 at all time points (P = 0.003, 0.002, and 0.003 for 25, 50, and 100 cycles, respectively) was observed. CONCLUSIONS: No significant damage to Group 1 DBTs was noted after 100 cycles, however, particulate matter is not adequately removed using this sterilization technique. Ultrasonic cleaning is warranted between DBDs to achieve adequate particulate removal prior to sterilization; greater damage occurs with this technique which supports replacing DBTs regularly.


Assuntos
Desbridamento/veterinária , Esterilização/métodos , Animais , Desbridamento/instrumentação , Diamante , Cães , Contaminação de Equipamentos , Microscopia Eletrônica de Varredura , Distribuição Aleatória , Análise Espectral , Ultrassom
9.
Water Res ; 149: 640-649, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30594003

RESUMO

Peracetic acid (PAA) is a promising alternative to chlorine for disinfection; however, bacterial regrowth after PAA disinfection is poorly understood. This study compared the regrowth of bacteria (Gram-negative Pseudomonas aeruginosa PAO1 and Gram-positive Bacillus sp.) after disinfection with PAA or free chlorine. In the absence of organic matter, PAA and free chlorine prevented the regrowth of planktonic cells of P. aeruginosa PAO1 at C·t (= disinfectant concentration × contact time) doses of (28.5 ±â€¯9.8) mg PAA·min·L-1 and (22.5 ±â€¯10.6) mg Cl2·min·L-1, respectively, suggesting that they had comparable efficiencies in preventing the regrowth of planktonic bacteria. For comparison, the minimum C·t doses of PAA and free chlorine to prevent the regrowth of P. aeruginosa PAO1 biofilm cells in the absence of organic matter were (14,000 ±â€¯1,732) mg PAA·min·L-1 and (6,500 ±â€¯2,291) mg Cl2·min·L-1, respectively. PAA was less effective than free chlorine in killing bacteria within biofilms in the absence of organic matter most likely because PAA reacts with biofilm matrix constituents slower than free chlorine. In the presence of organic matter, although the bactericidal efficiencies of both disinfectants significantly decreased, PAA was less affected due to its slower reaction with organic matter and/or slower self-decomposition. For instance, in a dilute Lysogeny broth-Miller, the minimum concentrations of PAA and free chlorine to prevent the regrowth of planktonic P. aeruginosa PAO1 were 20 mg PAA·L-1 and 300 mg Cl2·L-1, respectively. While both disinfectants are strong oxidants disrupting cell membrane, environmental scanning electron microscopy (ESEM) revealed that PAA made holes in the center of the cells, whereas free chlorine desiccated the cells. Overall, this study shows that PAA is a powerful disinfectant to prevent bacterial regrowth even in the presence of organic matter.


Assuntos
Desinfetantes , Ácido Peracético , Bactérias , Biofilmes , Cloro , Desinfecção , Plâncton
10.
Viruses ; 10(10)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340365

RESUMO

The transmission cycle of chikungunya virus (CHIKV) requires that mosquito vectors get persistently infected with the virus, following its oral acqsuisition from a vertebrate host. The mosquito midgut is the initial organ that gets infected with orally acquired CHIKV. Following its replication in the midgut epithelium, the virus exits the midgut and infects secondary tissues including the salivary glands before being transmitted to another host. Here, we investigate the pattern of CHIKV dissemination from the midgut of Aedes aegypti at the ultrastructural level. Bloodmeal ingestion caused overstretching of the midgut basal lamina (BL), which was disrupted in areas adjacent to muscles surrounding the midgut as shown by scanning electron microscopy (SEM). Using both transmission electron microscopy (TEM) and focused ion beam scanning electron microscopy (FIB-SEM) to analyze midgut preparations, mature chikungunya (CHIK) virions were found accumulating at the BL and within strands of the BL at 24⁻32 h post-infectious bloodmeal (pibm). From 48 h pibm onwards, virions no longer congregated at the BL and became dispersed throughout the basal labyrinth of the epithelial cells. Ingestion of a subsequent, non-infectious bloodmeal caused mature virions to congregate again at the midgut BL. Our study suggests that CHIKV needs a single replication cycle in the midgut epithelium before mature virions directly traverse the midgut BL during a relatively narrow time window, within 48 h pibm.


Assuntos
Aedes/virologia , Vírus Chikungunya/ultraestrutura , Mosquitos Vetores/virologia , Aedes/crescimento & desenvolvimento , Aedes/fisiologia , Animais , Membrana Basal/ultraestrutura , Membrana Basal/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Vírus Chikungunya/fisiologia , Feminino , Trato Gastrointestinal/ultraestrutura , Trato Gastrointestinal/virologia , Microscopia Eletrônica de Transmissão , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/fisiologia , Glândulas Salivares/ultraestrutura , Glândulas Salivares/virologia
11.
FEBS Lett ; 592(19): 3229-3238, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30184263

RESUMO

Nicotinamide adenine dinucleotide (NAD) is the redox cofactor of many enzymes, including the vast aldehyde dehydrogenase (ALDH) superfamily. Although the function of NAD(H) in hydride transfer is established, its influence on protein structure is less understood. Herein, we show that NAD+ -binding promotes assembly of the ALDH7A1 tetramer. Multiangle light scattering, small-angle X-ray scattering, and sedimentation velocity all show a pronounced shift of the dimer-tetramer equilibrium toward the tetramer when NAD+ is present. Furthermore, electron microscopy shows that cofactor binding enhances tetramer formation even at the low enzyme concentration used in activity assays, suggesting the tetramer is the active species. Altogether, our results suggest that the catalytically active oligomer of ALDH7A1 is assembled on demand in response to cofactor availability.


Assuntos
Aldeído Desidrogenase/química , NAD/química , Multimerização Proteica , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Biocatálise , Cristalografia por Raios X , Humanos , Cinética , Microscopia Eletrônica de Varredura , Modelos Moleculares , NAD/metabolismo , Ligação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
12.
Front Mol Biosci ; 5: 46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868607

RESUMO

The nucleotide-free chaperonin GroEL is capable of capturing transient unfolded or partially unfolded states that flicker in and out of existence due to large-scale protein dynamic vibrational modes. In this work, three short vignettes are presented to highlight our continuing advances in the application of GroEL biosensor biolayer interferometry (BLI) technologies and includes expanded uses of GroEL as a molecular scaffold for electron microscopy determination. The first example presents an extension of the ability to detect dynamic pre-aggregate transients in therapeutic protein solutions where the assessment of the kinetic stability of any folded protein or, as shown herein, quantitative detection of mutant-type protein when mixed with wild-type native counterparts. Secondly, using a BLI denaturation pulse assay with GroEL, the comparison of kinetically controlled denaturation isotherms of various von Willebrand factor (vWF) triple A domain mutant-types is shown. These mutant-types are single point mutations that locally disorder the A1 platelet binding domain resulting in one gain of function and one loss of function phenotype. Clear, separate, and reproducible kinetic deviations in the mutant-type isotherms exist when compared with the wild-type curve. Finally, expanding on previous electron microscopy (EM) advances using GroEL as both a protein scaffold surface and a release platform, examples are presented where GroEL-protein complexes can be imaged using electron microscopy tilt series and the low-resolution structures of aggregation-prone proteins that have interacted with GroEL. The ability of GroEL to bind hydrophobic regions and transient partially folded states allows one to employ this unique molecular chaperone both as a versatile structural scaffold and as a sensor of a protein's folded states.

13.
Biophys J ; 114(12): 2833-2843, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29925020

RESUMO

Homooligomerization of proline utilization A (PutA) bifunctional flavoenzymes is intimately tied to catalytic function and substrate channeling. PutA from Bradyrhizobium japonicum (BjPutA) is unique among PutAs in that it forms a tetramer in solution. Curiously, a dimeric BjPutA hot spot mutant was previously shown to display wild-type catalytic activity despite lacking the tetrameric structure. These observations raised the question of what is the active oligomeric state of BjPutA. Herein, we investigate the factors that contribute to tetramerization of BjPutA in vitro. Negative-stain electron microscopy indicates that BjPutA is primarily dimeric at nanomolar concentrations, suggesting concentration-dependent tetramerization. Further, sedimentation-velocity analysis of BjPutA at high (micromolar) concentration reveals that although the binding of active-site ligands does not alter oligomeric state, reduction of the flavin adenine dinucleotide cofactor results in dimeric protein. Size-exclusion chromatography coupled with multiangle light scattering and small-angle x-ray scattering analysis also reveals that reduced BjPutA is dimeric. Taken together, these results suggest that the BjPutA oligomeric state is dependent upon both enzyme concentration and the redox state of the flavin cofactor. This is the first report, to our knowledge, of redox-linked oligomerization in the PutA family.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Multimerização Proteica , Bradyrhizobium , Membrana Celular/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Ligantes , Modelos Moleculares , Oxirredução , Estrutura Quaternária de Proteína
14.
Biomater Sci ; 6(7): 1717-1722, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29896593
15.
ACS Biomater Sci Eng ; 4(7): 2330-2339, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435099

RESUMO

Hydrophobically driven self-assembly is a well-understood principle that has been shown to facilitate micelle formation. Although quite useful, the library of structures accessible is limited to only a few simplistic geometric configurations that are suboptimal for complex applications. It is believed that other physical phenomena like hydrogen bonding and electrostatic interactions can be exploited to complement hydrophobic interactions allowing for the design of structurally complex, aggregated micelles. To test this theory, ABC triblock peptide amphiphiles comprising an application-specific peptide, a zwitterion-like peptide, and a hydrophobic lipid were synthesized for which block sequence modifications and order changes were used to investigate their impact on micelle formation. The results provide significant evidence that both hydrophobic and electrostatic driving forces influence the formation of complex micellar structures. Specifically, hydrophobic self-assembly facilitates individual micelle formation, whereas dipole electrostatic interactions govern the association of micelle units into complex architectures. Initial results indicate that there exists considerable flexibility in the choice of application-specific peptide allowing these structures to serve as a platform technology for a variety of fields.

16.
J Bacteriol ; 200(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229700

RESUMO

Transmembrane bacterial chemoreceptors are extended, rod-shaped homodimers with ligand-binding sites at one end and interaction sites for signaling complex formation and histidine kinase control at the other. There are atomic-resolution structures of chemoreceptor fragments but not of intact, membrane-inserted receptors. Electron tomography of in vivo signaling complex arrays lack distinct densities for chemoreceptor rods away from the well-ordered base plate region, implying structural heterogeneity. We used negative staining, transmission electron microscopy, and image analysis to characterize the molecular shapes of intact homodimers of the Escherichia coli aspartate receptor Tar rendered functional by insertion into nanodisc-provided E. coli lipid bilayers. Single-particle analysis plus tomography of particles in a three-dimensional matrix revealed two bend loci in the chemoreceptor cytoplasmic domain, (i) a short, two-strand gap between the membrane-proximal, four-helix-bundle HAMP (histidine kinases, adenylyl cyclases, methyl-accepting chemoreceptors, and phosphatases) domain and the membrane-distal, four-helix coiled coil and (ii) aligned glycines in the extended, four-helix coiled coil, the position of a bend noted in the previous X-ray structure of a receptor fragment. Our images showed HAMP bends from 0° to ∼13° and glycine bends from 0° to ∼20°, suggesting that the loci are flexible hinges. Variable hinge bending explains indistinct densities for receptor rods outside the base plate region in subvolume averages of chemotaxis arrays. Bending at flexible hinges was not correlated with the chemoreceptor signaling state. However, our analyses showed that chemoreceptor bending avoided what would otherwise be steric clashes between neighboring receptors that would block the formation of core signaling complexes and chemoreceptor arrays.IMPORTANCE This work provides new information about the shape of transmembrane bacterial chemoreceptors, crucial components in the molecular machinery of bacterial chemotaxis. We found that intact, lipid-bilayer-inserted, and thus functional homodimers of the Escherichia coli chemoreceptor Tar exhibited bends at two flexible hinges along their ∼200-Å, rod-like, cytoplasmic domains. One hinge was at the short, two-strand gap between the membrane-proximal, four-helix-bundle HAMP (histidine kinases, adenylyl cyclases, methyl-accepting chemoreceptors, and phosphatases) domain and the membrane-distal, four-helix coiled coil. The other hinge was at aligned glycines in the extended, four-helix coiled coil, where a bend had been identified in the X-ray structure of a chemoreceptor fragment. Our analyses showed that flexible hinge bending avoided structural clashes in chemotaxis core complexes and their arrays.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/ultraestrutura , Receptores de Superfície Celular/química , Adenilil Ciclases/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Histidina Quinase/química , Processamento de Imagem Assistida por Computador/métodos , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas Quimiotáticas Aceptoras de Metil/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Monoéster Fosfórico Hidrolases/química , Análise Serial de Proteínas , Receptores de Aminoácido/química , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/ultraestrutura , Transdução de Sinais , Tomografia/métodos
17.
Toxins (Basel) ; 9(10)2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28937604

RESUMO

The anthrax lethal toxin consists of protective antigen (PA) and lethal factor (LF). Understanding both the PA pore formation and LF translocation through the PA pore is crucial to mitigating and perhaps preventing anthrax disease. To better understand the interactions of the LF-PA engagement complex, the structure of the LFN-bound PA pore solubilized by a lipid nanodisc was examined using cryo-EM. CryoSPARC was used to rapidly sort particle populations of a heterogeneous sample preparation without imposing symmetry, resulting in a refined 17 Å PA pore structure with 3 LFN bound. At pH 7.5, the contributions from the three unstructured LFN lysine-rich tail regions do not occlude the Phe clamp opening. The open Phe clamp suggests that, in this translocation-compromised pH environment, the lysine-rich tails remain flexible and do not interact with the pore lumen region.


Assuntos
Antígenos de Bactérias/ultraestrutura , Antraz , Toxinas Bacterianas , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína
18.
J Struct Biol ; 178(2): 165-76, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22248450

RESUMO

We have previously used cryo-electron tomography combined with sub-volume averaging and classification to obtain 3D structures of macromolecular assemblies in cases where a single dominant species was present, and applied these methods to the analysis of a variety of trimeric HIV-1 and SIV envelope glycoproteins (Env). Here, we extend these studies by demonstrating automated, iterative, missing wedge-corrected 3D image alignment and classification methods to distinguish multiple conformations that are present simultaneously. We present a method for measuring the spatial distribution of the vector elements representing distinct conformational states of Env. We identify data processing strategies that allow clear separation of the previously characterized closed and open conformations, as well as unliganded and antibody-liganded states of Env when they are present in mixtures. We show that identifying and removing spikes with the lowest signal-to-noise ratios improves the overall accuracy of alignment between individual Env sub-volumes, and that alignment accuracy, in turn, determines the success of image classification in assessing conformational heterogeneity in heterogeneous mixtures. We validate these procedures for computational separation by successfully separating and reconstructing distinct 3D structures for unliganded and antibody-liganded as well as open and closed conformations of Env present simultaneously in mixtures.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , HIV-1/química , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Conformação Molecular
19.
J Vis Exp ; (58)2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22158337

RESUMO

Since its discovery nearly 30 years ago, more than 60 million people have been infected with the human immunodeficiency virus (HIV) (www.usaid.gov). The virus infects and destroys CD4+ T-cells thereby crippling the immune system, and causing an acquired immunodeficiency syndrome (AIDS) (2). Infection begins when the HIV Envelope glycoprotein "spike" makes contact with the CD4 receptor on the surface of the CD4+ T-cell. This interaction induces a conformational change in the spike, which promotes interaction with a second cell surface co-receptor (5,9). The significance of these protein interactions in the HIV infection pathway makes them of profound importance in fundamental HIV research, and in the pursuit of an HIV vaccine. The need to better understand the molecular-scale interactions of HIV cell contact and neutralization motivated the development of a technique to determine the structures of the HIV spike interacting with cell surface receptor proteins and molecules that block infection. Using cryo-electron tomography and 3D image processing, we recently demonstrated the ability to determine such structures on the surface of native virus, at ˜20 Šresolution (9,14). This approach is not limited to resolving HIV Envelope structures, and can be extended to other viral membrane proteins and proteins reconstituted on a liposome. In this protocol, we describe how to obtain structures of HIV envelope glycoproteins starting from purified HIV virions and proceeding stepwise through preparing vitrified samples, collecting, cryo-electron microscopy data, reconstituting and processing 3D data volumes, averaging and classifying 3D protein subvolumes, and interpreting results to produce a protein model. The computational aspects of our approach were adapted into modules that can be accessed and executed remotely using the Biowulf GNU/Linux parallel processing cluster at the NIH (http://biowulf.nih.gov). This remote access, combined with low-cost computer hardware and high-speed network access, has made possible the involvement of researchers and students working from school or home.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Glicoproteínas/química , HIV-1/química , Proteínas do Envelope Viral/química , Microscopia Crioeletrônica/instrumentação , Tomografia com Microscopia Eletrônica/instrumentação , HIV-1/ultraestrutura , Humanos , Modelos Moleculares
20.
J Virol ; 85(23): 12114-23, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937655

RESUMO

The trimeric envelope glycoprotein (Env) spikes displayed on the surfaces of simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) virions are composed of three heterodimers of the viral glycoproteins gp120 and gp41. Although binding of gp120 to cell surface CD4 and a chemokine receptor is known to elicit conformational changes in gp120 and gp41, changes in quaternary structure of the trimer have only recently been elucidated. For the HIV-1 BaL isolate, CD4 attachment results in a striking rearrangement of the trimer from a "closed" to an "open" conformation. The effect of CD4 on SIV trimers, however, has not been described. Using cryo-electron tomography, we have now determined molecular architectures of the soluble CD4 (sCD4)-bound states of SIV Env trimers for three different strains (SIVmneE11S, SIVmac239, and SIV CP-MAC). In marked contrast to HIV-1 BaL, SIVmneE11S and SIVmac239 Env showed only minor conformational changes following sCD4 binding. In SIV CP-MAC, where trimeric Env displays a constitutively "open" conformation similar to that seen for HIV-1 BaL Env in the sCD4-complexed state, we show that there are no significant further changes in conformation upon the binding of either sCD4 or 7D3 antibody. The density maps also show that 7D3 and 17b antibodies target epitopes on gp120 that are on opposites sides of the coreceptor binding site. These results provide new insights into the structural diversity of SIV Env and show that there are strain-dependent variations in the orientation of sCD4 bound to trimeric SIV Env.


Assuntos
Antígenos CD4/química , Antígenos CD4/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Antígenos CD4/imunologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Tomografia com Microscopia Eletrônica , Humanos , Glicoproteínas de Membrana/imunologia , Modelos Moleculares , Estrutura Quaternária de Proteína , Receptores CCR5/imunologia , Receptores CCR5/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas do Envelope Viral/imunologia , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...