Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(4): 044802, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058730

RESUMO

Plasma wakefields can enable very high accelerating gradients for frontier high energy particle accelerators, in excess of 10 GeV/m. To overcome limits on single stage acceleration, specially shaped drive beams can be used in both linear and nonlinear plasma wakefield accelerators (PWFA), to increase the transformer ratio, implying that the drive beam deceleration is minimized relative to acceleration obtained in the wake. In this Letter, we report the results of a nonlinear PWFA, high transformer ratio experiment using high-charge, longitudinally asymmetric drive beams in a plasma cell. An emittance exchange process is used to generate variable drive current profiles, in conjunction with a long (multiple plasma wavelength) witness beam. The witness beam is energy modulated by the wakefield, yielding a response that contains detailed spectral information in a single-shot measurement. Using these methods, we generate a variety of beam profiles and characterize the wakefields, directly observing transformer ratios up to R=7.8. Furthermore, a spectrally based reconstruction technique, validated by 3D particle-in-cell simulations, is introduced to obtain the drive beam current profile from the decelerating wake data.

2.
Phys Rev Lett ; 120(11): 114801, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29601751

RESUMO

Collinear wakefield acceleration has been long established as a method capable of generating ultrahigh acceleration gradients. Because of the success on this front, recently, more efforts have shifted towards developing methods to raise the transformer ratio (TR). This figure of merit is defined as the ratio of the peak acceleration field behind the drive bunch to the peak deceleration field inside the drive bunch. TR is always less than 2 for temporally symmetric drive bunch distributions and therefore recent efforts have focused on generating asymmetric distributions to overcome this limitation. In this Letter, we report on using the emittance-exchange method to generate a shaped drive bunch to experimentally demonstrate a TR≈5 in a dielectric wakefield accelerator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...