Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Toxicol Sci ; 46(2): 57-68, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33536390

RESUMO

The number of gene therapies in development continues to increase, as they represent a novel method to treat, and potentially cure, many diseases. Gene therapies can be conducted with an in vivo or ex vivo approach, to cause gene augmentation, gene suppression, or genomic editing. Adeno-associated viruses are commonly used to deliver gene therapies, but their use is associated with several manufacturing, nonclinical and clinical challenges. As these challenges emerge, regulatory agency expectations continue to evolve. Following administration of rAAV-based gene therapies, nonclinical toxicities may occur, which includes immunogenicity, hepatotoxicity, neurotoxicity, and the potential risks for insertional mutagenesis and subsequent tumorgenicity. The mechanism for these findings and translation into the clinical setting are unclear at this time but have influenced the nonclinical studies that regulatory agencies are increasingly requesting to support clinical trials and marketing authorizations. These evolving regulatory expectations and toxicities, as well as future nonclinical considerations, are discussed herein.


Assuntos
Dependovirus , Técnicas de Transferência de Genes , Terapia Genética/métodos , Terapia Genética/tendências , Vetores Genéticos , Carcinogênese , Terapia Genética/efeitos adversos , Vetores Genéticos/toxicidade , Humanos , Mutagênese
2.
Nucleic Acid Ther ; 26(2): 93-101, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26643897

RESUMO

Development of locked nucleic acid (LNA) gapmers, antisense oligonucleotides used for efficient inhibition of target RNA expression, is limited by nontarget-mediated hepatotoxicity. Increased binding of hepatocellular proteins to toxic LNA gapmers may be one of the mechanisms contributing to LNA gapmer-induced hepatotoxicity in vivo. In the present study, we investigated the protein binding propensity of nontoxic sequence-1 (NTS-1), toxic sequence-2 (TS-2), and severely highly toxic sequence-3 (HTS-3) LNA gapmers using human protein microarrays. We previously demonstrated by the transcription profiling analysis of liver RNA isolated from mice that TS-2 and HTS-3 gapmers modulate different transcriptional pathways in mice leading to hepatotoxicity. Our protein array profiling demonstrated that a greater number of proteins, including ones associated with hepatotoxicity, hepatic system disorder, and cell functions, were bound by TS-2 and HTS-3 compared with NTS-1. However, the profiles of proteins bound by TS-2 and HTS-3 were similar and did not distinguish proteins contributing to severe in vivo toxicity. These results, together with the previous transcription profiling analysis, indicate that the combination of sequence-dependent transcription modulation and increased protein binding of toxic LNA gapmers contributes to hepatotoxicity.


Assuntos
Análise Serial de Proteínas , Mapeamento de Interação de Proteínas , Animais , Humanos , Oligonucleotídeos/genética , Oligonucleotídeos Antissenso/genética , Mapas de Interação de Proteínas , Células Sf9 , Spodoptera
3.
Toxicol Sci ; 138(1): 234-48, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24336348

RESUMO

Development of LNA gapmers, antisense oligonucleotides used for efficient inhibition of target RNA expression, is limited by non-target mediated hepatotoxicity issues. In the present study, we investigated hepatic transcription profiles of mice administered non-toxic and toxic LNA gapmers. After repeated administration, a toxic LNA gapmer (TS-2), but not a non-toxic LNA gapmer (NTS-1), caused hepatocyte necrosis and increased serum alanine aminotransferase levels. Microarray data revealed that, in addition to gene expression patterns consistent with hepatotoxicity, 17 genes in the clathrin-mediated endocytosis (CME) pathway were altered in the TS-2 group. TS-2 significantly down-regulated myosin 1E (Myo1E), which is involved in release of clathrin-coated pits from plasma membranes. To map the earliest transcription changes associated with LNA gapmer-induced hepatotoxicity, a second microarray analysis was performed using NTS-1, TS-2, and a severely toxic LNA gapmer (HTS-3) at 8, 16, and 72 h following a single administration in mice. The only histopathological change observed was minor hepatic hypertrophy in all LNA groups across time points. NTS-1, but not 2 toxic LNA gapmers, increased immune response genes at 8 and 16 h but not at 72 h. TS-2 significantly perturbed the CME pathway only at 72 h, while Myo1E levels were decreased at all time points. In contrast, HTS-3 modulated DNA damage pathway genes at 8 and 16 h and also modulated the CME pathway genes (but not Myo1E) at 16 h. Our results may suggest that different LNAs modulate distinct transcriptional genes and pathways contributing to non-target mediated hepatotoxicity in mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Endocitose/efeitos dos fármacos , Fígado/efeitos dos fármacos , Oligonucleotídeos Antissenso/toxicidade , Oligonucleotídeos/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Clatrina/metabolismo , Endocitose/genética , Perfilação da Expressão Gênica , Injeções Subcutâneas , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...