Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 136(16): 164106, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22559469

RESUMO

Aspects of density functional resonance theory (DFRT) [D. L. Whitenack and A. Wasserman, Phys. Rev. Lett. 107, 163002 (2011)], a recently developed complex-scaled version of ground-state density functional theory (DFT), are studied in detail. The asymptotic behavior of the complex density function is related to the complex resonance energy and system's threshold energy, and the function's local oscillatory behavior is connected with preferential directions of electron decay. Practical considerations for implementation of the theory are addressed including sensitivity to the complex-scaling parameter, θ. In Kohn-Sham DFRT, it is shown that almost all θ-dependence in the calculated energies and lifetimes can be extinguished via use of a proper basis set or fine grid. The highest occupied Kohn-Sham orbital energy and lifetime are related to physical affinity and width, and the threshold energy of the Kohn-Sham system is shown to be equal to the threshold energy of the interacting system shifted by a well-defined functional. Finally, various complex-scaling conditions are derived which relate the functionals of ground-state DFT to those of DFRT via proper scaling factors and a non-Hermitian coupling-constant system.

2.
Phys Rev Lett ; 107(16): 163002, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22107377

RESUMO

Density functional resonance theory (DFRT) is a complex-scaled version of ground-state density functional theory (DFT) that allows one to calculate the in-principle exact resonance energies and lifetimes of metastable anions. In this formalism, the energy and lifetime of the lowest-energy resonance of unbound systems is encoded into a complex "density" that can be obtained via complex-coordinate scaling. This complex density is used as the primary variable in a DFRT calculation, just as the ground-state density would be used as the primary variable in DFT. As in DFT, there exists a mapping of the N-electron interacting system to a Kohn-Sham system of N noninteracting particles. This mapping facilitates self-consistent calculations with an initial guess for the complex density, as illustrated with an exactly solvable model system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...