Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176121

RESUMO

Robots have been used to offset the limb weight through gravity compensation in upper body rehabilitation to delineate the effects of loss of strength and loss of dexterity, which are two common forms of post-stroke impairments. In this paper, we explored the impact of this anti-gravity support on the quality of movement during reaching and coordinated arm movements in a pilot study with two participants with chronic stroke. The subjects donned the Harmony exoskeleton which supported proper shoulder coordination in addition to providing gravity compensation. Participants had previously taken part in seven one-hour sessions with the Harmony exoskeleton, performing six sets of passive-stretching and active exercises. Pre- and post-training sessions included assessments of two separate tasks, planar reaching and a set of six coordinated arm movements, in two conditions, outside of and supported by the exoskeleton. The movements were recorded using an optical motion capture system and analyzed using spectral arc length (SPARC) and straight line deviation to quantify movement smoothness and quality. We observed that gravity compensation resulted in an increased smoothness for the subject with high level of impairment whereas compensation resulted in a reduction in smoothness for the subject with low level of impairment in the reaching task. Both participants demonstrated better coordination of the shoulder-arm joint with gravity compensation. This result motivates further studies into the role of gravity compensation during coordinated movement training and rehabilitation interventions.


Assuntos
Exoesqueleto Energizado , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Fenômenos Biomecânicos , Humanos , Movimento , Projetos Piloto , Extremidade Superior
2.
IEEE Int Conf Rehabil Robot ; 2019: 637-643, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374702

RESUMO

Harmony is a bimanual upper-limb exoskeleton designed for post-stroke rehabilitation. It moves the subject's shoulders and arms through their entire ranges of motion while maintaining natural coordination, is capable of force/torque control of each joint, and is equipped with sensors to measure motions and interaction forces. With these capabilities Harmony has the potential to assess motor function and create individualized therapy regimens. As a first step, five stroke survivors underwent rehabilitation sessions practicing multijoint movements with the device. Each participant performed a total of 1130 motions over seven hours of therapy with no adverse effects reported by participants or the attending therapist, supporting the suitability of Harmony for use in a clinical setting. Donning and doffing time averaged 3.5 minutes and decreased with therapist experience. Reported levels of stress, anxiety, and pain indicate that the Harmony safely assisted in the completion of the trained movements and has great potential to motivate and engage patients. We developed a novel methodology for assessing coordination capability and results from the study indicate that Harmony can enable therapists to identify neuromuscular weakness and maladaptive coordination patterns and develop targeted interventions to address these aspects of upper-limb function. The results suggest Harmony's feasibility and show promising improvements, motivating future study to gain statistical support.


Assuntos
Exoesqueleto Energizado , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Extremidade Superior/fisiopatologia , Adulto , Idoso , Fenômenos Biomecânicos , Cotovelo/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...