Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 19(7): 1563-1579, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29134790

RESUMO

TAXONOMY: Soybean mosaic virus (SMV) is a species within the genus Potyvirus, family Potyviridae, which includes almost one-quarter of all known plant RNA viruses affecting agriculturally important plants. The Potyvirus genus is the largest of all genera of plant RNA viruses with 160 species. PARTICLE: The filamentous particles of SMV, typical of potyviruses, are about 7500 Å long and 120 Å in diameter with a central hole of about 15 Å in diameter. Coat protein residues are arranged in helices of about 34 Å pitch having slightly less than nine subunits per turn. GENOME: The SMV genome consists of a single-stranded, positive-sense, polyadenylated RNA of approximately 9.6 kb with a virus-encoded protein (VPg) linked at the 5' terminus. The genomic RNA contains a single large open reading frame (ORF). The polypeptide produced from the large ORF is processed proteolytically by three viral-encoded proteinases to yield about 10 functional proteins. A small ORF, partially overlapping the P3 cistron, pipo, is encoded as a fusion protein in the N-terminus of P3 (P3N + PIPO). BIOLOGICAL PROPERTIES: SMV's host range is restricted mostly to two plant species of a single genus: Glycine max (cultivated soybean) and G. soja (wild soybean). SMV is transmitted by aphids non-persistently and by seeds. The variability of SMV is recognized by reactions on cultivars with dominant resistance (R) genes. Recessive resistance genes are not known. GEOGRAPHICAL DISTRIBUTION AND ECONOMIC IMPORTANCE: As a consequence of its seed transmissibility, SMV is present in all soybean-growing areas of the world. SMV infections can reduce significantly seed quantity and quality (e.g. mottled seed coats, reduced seed size and viability, and altered chemical composition). CONTROL: The most effective means of managing losses from SMV are the planting of virus-free seeds and cultivars containing single or multiple R genes. KEY ATTRACTIONS: The interactions of SMV with soybean genotypes containing different dominant R genes and an understanding of the functional role(s) of SMV-encoded proteins in virulence, transmission and pathogenicity have been investigated intensively. The SMV-soybean pathosystem has become an excellent model for the examination of the genetics and genomics of a uniquely complex gene-for-gene resistance model in a crop of worldwide importance.


Assuntos
Potyvirus/patogenicidade , Interações entre Hospedeiro e Microrganismos , Fases de Leitura Aberta/genética , Potyvirus/genética , Vírus de RNA/genética , Vírus de RNA/patogenicidade
2.
Plant Dis ; 97(5): 693, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-30722207

RESUMO

Several viral diseases of soybean (Glycine max) have been identified in the north-central U.S. soybean production area, which includes Wisconsin and Iowa (2). Previously, Soybean vein necrosis disease (SVND) caused by Soybean vein necrosis-associated virus was reported in Arkansas, Tennessee, and other southern states (4). In September 2012, soybean plants with symptoms similar to those reported for SVND (4) were observed in fields across Wisconsin and Iowa. Symptoms included leaf-vein and leaf chlorosis, followed by necrosis of the leaf veins and eventually necrosis of the entire leaf. Six samples with symptoms indicative of SVNaV were collected from research plots located at the West Madison Agricultural Research Station located in Madison, WI. An additional three samples were collected from three locations in central Iowa. Total RNA extracted from each sample using the Trizol Plus RNA purification kit (Invitrogen, Carlsbad, CA) was used to generate complementary DNA (cDNA) using the iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA) following the manufacturers' suggested protocols. The resulting cDNA was used as template in a PCR with SVNaV-specific primers, SVNaV-f1 and SVNaV-r1 (3). PCRs of two of the six Wisconsin samples and two Iowa samples were positive. Amplification products were not detected in the other five samples. The amplification products from the four strongly positive samples were purified using the Wizard SV Gel and PCR Purification Kit (Promega, Madison, WI) following the manufacturer's suggested protocol and were subjected to automated sequencing (University of Wisconsin Biotechnology Center or Iowa State University, DNA Sequencing Facilities). BLASTn (1) alignments of the 915-bp consensus sequence revealed 98% and >99% identity of the Wisconsin and Iowa samples, respectively, with the 'S' segment of the SVNaV 'TN' isolate (GenBank Accession No. GU722319.1). Samples from the same leaf tissue used above, were subjected to serological tests for SVNaV using antigen coated-indirect ELISA (3). Asymptomatic soybeans grown in the greenhouse were used as a source of leaves for negative controls. These tests confirmed the presence of SVNaV in eight symptomatic soybean leaflets collected in Wisconsin and Iowa. The asymptomatic control and one Iowa sample, which was also PCR-negative, were also negative by serological testing. Six additional samples from soybean fields in as many Wisconsin counties (Fond Du Lac, Grant, Green, Juneau, Richland, Rock) tested positive for SVNaV using specific primers that amplify the 'L' segment (4). The sequenced amplification products (297-bp) showed 99 to 100% homology to the L segment of the TN isolate (GU722317.1). To our knowledge, this is the first report of SVNaV associated with soybean and the first report of SVND in Wisconsin and Iowa. Considering that little is known about SVNaV, it is assumed that it is like other Tospoviruses and can cause significant yield loss (4). Soybean is a major cash crop for Wisconsin and Iowa, and infection by SVNaV could result in potential yield loss in years where epidemics begin early and at a high initial inoculum level. References: (1) S. F. Altschul et al. J. Mol. Biol. 215:403, 1990. (2) G. L. Hartman et al. Compendium of Soybean Diseases, 4th ed, 1999. (3) B. Khatabi et al. Eur. J. Plant Pathol. 133:783, 2012. (4) J. Zhou et al. Virus Genes 43:289, 2011.

3.
Curr Opin Plant Biol ; 4(2): 123-9, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11228434

RESUMO

Epigenetic gene silencing results from the inhibition of transcription or from posttranscriptional RNA degradation. DNA methylation is one of the most central and frequently discussed elements of gene silencing in both plants and mammals. Because DNA methylation has not been detected in yeast, Drosophila or Caenorhabditis elegans, the standard genetic workhorses, plants are important models for revealing the role of DNA methylation in the epigenetic regulation of genes in vivo.


Assuntos
Metilação de DNA , Inativação Gênica , RNA de Plantas/genética
4.
Plant Cell ; 12(4): 569-82, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10760245

RESUMO

Arabidopsis plants have a system to specifically restrict the long-distance movement of tobacco etch potyvirus (TEV) without involving either hypersensitive cell death or systemic acquired resistance. At least two dominant genes, RTM1 and RTM2, are necessary for this restriction. Through a series of coinfection experiments with heterologous viruses, the RTM1/RTM2-mediated restriction was shown to be highly specific for TEV. The RTM2 gene was isolated by a map-based cloning strategy. Isolation of RTM2 was confirmed by transgenic complementation and sequence analysis of wild-type and mutant alleles. The RTM2 gene product is a multidomain protein containing an N-terminal region with high similarity to plant small heat shock proteins (HSPs). Phylogenetic analysis revealed that the RTM2 small HSP-like domain is evolutionarily distinct from each of the five known classes of plant small HSPs. Unlike most other plant genes encoding small HSPs, expression of the RTM2 gene was not induced by high temperature and did not contribute to thermotolerance of seedlings. The RTM2 gene product was also shown to contain a large C-terminal region with multiple repeating sequences.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/fisiologia , Genes de Plantas/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Proteínas de Plantas/fisiologia , Potyvirus/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/virologia , Sequência de Bases , Clonagem Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Teste de Complementação Genética , Proteínas de Choque Térmico/classificação , Resposta ao Choque Térmico , Lectinas/genética , Lectinas/fisiologia , Dados de Sequência Molecular , Mutação/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/fisiologia , Fenótipo , Filogenia , Lectinas de Plantas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Potyvirus/patogenicidade , Estrutura Terciária de Proteína , RNA Mensageiro/análise , RNA Mensageiro/genética , Alinhamento de Sequência , Especificidade por Substrato
5.
Proc Natl Acad Sci U S A ; 97(1): 489-94, 2000 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-10618445

RESUMO

The locus RTM1 is necessary for restriction of long-distance movement of tobacco etch virus in Arabidopsis thaliana without causing a hypersensitive response or inducing systemic acquired resistance. The RTM1 gene was isolated by map-based cloning. The deduced gene product is similar to the alpha-chain of the Artocarpus integrifolia lectin, jacalin, and to several proteins that contain multiple repeats of a jacalin-like sequence. These proteins comprise a family with members containing modular organizations of one or more jacalin repeat units and are implicated in defense against viruses, fungi, and insects.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/genética , Lectinas/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Antivirais/química , Mapeamento Cromossômico , Clonagem Molecular , Genes de Plantas , Lectinas/química , Dados de Sequência Molecular , Lectinas de Plantas , Proteínas de Plantas/química , Vírus de Plantas/patogenicidade , Alinhamento de Sequência
6.
Proc Natl Acad Sci U S A ; 96(2): 772-7, 1999 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-9892709

RESUMO

The genetic basis for susceptibility or nonsusceptibility of plants to viruses is understood poorly. Two selectable tobacco etch virus (TEV) strains were developed for identification of Arabidopsis thaliana mutants with either gain-of-susceptibility or loss-of-susceptibility phenotypes. These strains conferred a conditional-survival phenotype to Arabidopsis based on systemic expression of herbicide resistance or proherbicide sensitivity genes, thereby facilitating mass selections and screens for Arabidopsis mutants that enhance or suppress TEV replication, cell-to-cell movement, or long-distance movement. A multicomponent mechanism that restricts systemic invasion of TEV was identified through isolation of gain-of-susceptibility mutants with alterations at two loci.


Assuntos
Arabidopsis/virologia , Predisposição Genética para Doença/genética , Vírus de Plantas/patogenicidade , Arabidopsis/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Genes de Plantas/genética , Herbicidas/farmacologia , Mutação/genética
7.
Plant J ; 14(2): 177-86, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9628015

RESUMO

Screens of Arabidopsis thaliana for susceptibility to tobacco etch virus (TEV) revealed that each of 10 ecotypes were able to support genome replication and cell-to-cell movement in inoculated leaves. However, only four ecotypes, including C24 and La-er, supported complete infections in which TEV was able to replicate and move from cell to cell and long distances through the vasculature. The rates of cell-to-cell movement of a reporter-tagged TEV strain (TEV-GUS) in inoculated leaves of C24 and Columbia (Col-3) were similar, and infection foci continued to expand in both ecotypes through 10 days post-inoculation. No visible or microscopic hypersensitive or cell death responses were evident in inoculated leaves of Col-3 plants. Infection of neither C24 nor Col-3 plants with TEV-GUS resulted in induction of PR-1a gene expression, which is normally associated with active defence responses and systemic acquired resistance. The genetic basis for the restriction of long-distance movement of TEV-GUS in Columbia was investigated using C24 x Col-3 crosses and backcrosses and using La-er x Col-0 recombinant inbred lines. A dominant locus conditioning the restricted TEV infection phenotype was identified on chromosome 1 between markers ATEAT1 and NCC1 at approximately 14 cM in both genetic analyses. This locus was designated RTM1 (restricted TEV movement 1). It is proposed that RTM1 mediates a restriction of long-distance movement through a mechanism that differs substantially from those conditioned by the dominant resistance genes normally associated with gene-for-gene interactions.


Assuntos
Arabidopsis/virologia , Nicotiana/virologia , Doenças das Plantas/virologia , Plantas Tóxicas , Potyviridae/genética , Potyviridae/patogenicidade , Transporte Biológico , Morte Celular , Mapeamento Cromossômico , Glucuronidase/metabolismo , Imunidade Inata , Fenótipo , Doenças das Plantas/genética , Potyviridae/enzimologia
8.
Curr Opin Plant Biol ; 1(4): 336-41, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10066606

RESUMO

The outcome of infection of plants by viruses is determined by the net effects of compatibility functions and defense responses. Recent advances reveal that viruses have the capacity to modulate host compatibility and defense functions by a variety of mechanisms.


Assuntos
Plantas/virologia , Vírus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...