Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 11(9)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36066131

RESUMO

Suction feeding in fishes is characterized by rapid cranial movements, but extant lungfishes (Sarcopterygii: Dipnoi) exhibit a reduced number and mobility of cranial bones relative to actinopterygian fishes. Despite fusion of cranial elements, lungfishes are proficient at suction feeding, though the impacts of novel cranial morphology and reduced cranial kinesis on feeding remain poorly understood. We used X-ray reconstruction of moving morphology (XROMM) to study the kinematics of seven mobile elements (neurocranium, upper jaw, lower jaw, tongue, ceratohyal, clavicle, and cranial rib) and two muscles (costoclavicular portion of the hypaxialis and rectus cervicis) during the feeding strikes of West African lungfish (Protopterus annectens). We found that feeding by P. annectens on non-evasive prey is relatively slow, with a mean time to peak gape of 273 ms. Lower jaw depression and clavicular rotation were hinge-like, with one degree of freedom, but the ceratohyals rotated in a complex motion involving depression and long-axis rotation. We quantified the relative contributions to oral cavity volume change (RCVC) and found that oral cavity expansion is created primarily by ceratohyal and clavicle motion. P. annectens suction feeds relatively slowly but successfully through muscle shortening of hypaxial and rectus cervicis muscles contributing to hyoid mobility.


Assuntos
Peixes , Cinese , Animais , Peixes/fisiologia , Crânio/anatomia & histologia , Sucção , Raios X
2.
J Exp Biol ; 225(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019979

RESUMO

Many fishes use substantial cranial kinesis to rapidly increase buccal cavity volume, pulling prey into the mouth via suction feeding. Living polypterids are a key lineage for understanding the evolution and biomechanics of suction feeding because of their phylogenetic position and unique morphology. Polypterus bichir have fewer mobile cranial elements compared with teleosts [e.g. immobile (pre)maxillae] but successfully generate suction through dorsal, ventral and lateral oral cavity expansion. However, the relative contributions of these motions to suction feeding success have not been quantified. Additionally, extensive body musculature and lack of opercular jaw opening linkages make P. bichir of interest for examining the role of cranial versus axial muscles in driving mandibular depression. Here, we analyzed the kinematics of buccal expansion during suction feeding in P. bichir using X-ray Reconstruction of Moving Morphology (XROMM) and quantified the contributions of skeletal elements to oral cavity volume expansion and prey capture. Mouth gape peaks early in the strike, followed by maximum cleithral and ceratohyal rotations, and finally by opercular and suspensorial abductions, maintaining the anterior-to-posterior movement of water. Using a new method of quantifying bones' relative contributions to volume change (RCVC), we demonstrate that ceratohyal kinematics are the most significant drivers of oral cavity volume change. All measured cranial bone motions, except abduction of the suspensorium, are correlated with prey motion. Lastly, cleithral retraction is largely concurrent with ceratohyal retraction and jaw depression, while the sternohyoideus maintains constant length, suggesting a central role of the axial muscles, cleithrum and ceratohyal in ventral expansion.


Assuntos
Comportamento Alimentar , Cinese , Animais , Fenômenos Biomecânicos , Comportamento Alimentar/fisiologia , Peixes , Arcada Osseodentária/fisiologia , Boca/fisiologia , Filogenia , Comportamento Predatório/fisiologia , Sucção
3.
J Evol Biol ; 32(1): 76-88, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414343

RESUMO

Convergent evolution of a novel locomotor strategy implies that a fitness benefit may be associated with the new gait. Opportunities to study this phenomenon are often constrained by a lack of transitional taxa, but teleost fishes offer examples of extant species across such evolutionary shifts in gait. For instance, one species from Osteoglossiformes and the entire order of Gymnotiformes independently evolved a novel gait, gymnotiform locomotion, where thrust is produced by the undulation of an elongate anal fin. Here, we investigate whether this convergence in gait is also associated with similarities in shape, burst swimming abilities, and/or steady-swimming energetics. Specifically, we measured body and fin morphology of fish within Gymnotiformes and Osteoglossiformes, along with closely related Siluriformes and Cypriniformes, to examine the link between gymnotiform locomotion and morphology in a phylogenetic context. Second, we tested the burst swimming capabilities and oxygen consumption during endurance swimming of a subset of the same gymnotiform, osteoglossiform, and cypriniform species, including "transitional" Osteoglossiformes that exhibit intermediate gaits, to determine whether the evolution of this specialized gait is associated with a change in either of these performance metrics. Our results suggest that convergence on the gymnotiform gait is associated with morphological convergence, but does not constrain a fish's maximum sprinting speeds or their energetic demands during steady swimming.


Assuntos
Peixes/anatomia & histologia , Gimnotiformes , Natação , Animais , Evolução Biológica , Fenômenos Biomecânicos , Peixes/fisiologia , Gimnotiformes/anatomia & histologia , Gimnotiformes/fisiologia , Filogenia
4.
Curr Zool ; 62(5): 475-488, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29491937

RESUMO

Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...