Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 764, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992042

RESUMO

Satellite data are effective for mapping wildfires, particularly in remote locations where monitoring is rare. Geolocated fire detections can be used for enhanced fire management and fire modelling through daily fire progression mapping. Here we present the Canadian Fire Spread Dataset (CFSDS), encompassing interpolated progressions for fires >1,000 ha in Canada from 2002-2021, representing the day-of-burning and 50 environmental covariates for every pixel. Day-of-burning was calculated by ordinary kriging of active fire detections from the Moderate Resolution Imaging Spectroradiometer and the Visible Infrared Imaging Radiometer Suite, enabling a substantial improvement in coverage and resolution over existing datasets. Day of burning at each pixel was used to identify environmental conditions of burning such as daily weather, derived weather metrics, topography, and forest fuels characteristics. This dataset can be used in a broad range of research and management applications, such as retrospective analysis of fire spread, as a benchmark dataset for validating statistical or machine-learning models, and for forecasting the effects of climate change on fire activity.

2.
Glob Chang Biol ; 30(6): e17363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864471

RESUMO

Recently burned boreal forests have lower aboveground fuel loads, generating a negative feedback to subsequent wildfires. Despite this feedback, short-interval reburns (≤20 years between fires) are possible under extreme weather conditions. Reburns have consequences for ecosystem recovery, leading to enduring vegetation change. In this study, we characterize the strength of the fire-fuel feedback in recently burned Canadian boreal forests and the weather conditions that overwhelm resistance to fire spread in recently burned areas. We used a dataset of daily fire spread for thousands of large boreal fires, interpolated from remotely sensed thermal anomalies to which we associated local weather from ERA5-Land for each day of a fire's duration. We classified days with >3 ha of fire growth as spread days and defined burned pixels overlapping a fire perimeter ≤20 years old as short-interval reburns. Results of a logistic regression showed that the odds of fire spread in recently burned areas were ~50% lower than in long-interval fires; however, all Canadian boreal ecozones experienced short-interval reburning (1981-2021), with over 100,000 ha reburning annually. As fire weather conditions intensify, the resistance to fire spread declines, allowing fire to spread in recently burned areas. The weather associated with short-interval fire spread days was more extreme than the conditions during long-interval spread, but overall differences were modest (e.g. relative humidity 2.6% lower). The frequency of fire weather conducive to short-interval fire spread has significantly increased in the western boreal forest due to climate warming and drying (1981-2021). Our results suggest an ongoing degradation of fire-fuel feedbacks, which is likely to continue with climatic warming and drying.


Assuntos
Florestas , Tempo (Meteorologia) , Incêndios Florestais , Incêndios Florestais/prevenção & controle , Incêndios Florestais/estatística & dados numéricos , Mudança Climática , Aquecimento Global
3.
FEMS Microbiol Ecol ; 98(8)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35671126

RESUMO

Increasing fire frequency in some biomes is leading to fires burning in close succession, triggering rapid vegetation change and altering soil properties. We studied the effects of short-interval (SI) reburns on soil bacterial communities of the boreal forest of northwestern Canada using paired sites (n = 44). Both sites in each pair had burned in a recent fire; one site had burned within the previous 20 years before the recent fire (SI reburn) and the other had not. Paired sites were closely matched in prefire ecosite characteristics, prefire tree species composition, and stand structure. We hypothesized that there would be a significant effect of short vs. long fire-free intervals on community composition and that richness would not be consistently different between paired sites. We found that Blastococcus sp. was consistently enriched in SI reburns, indicating its role as a strongly 'pyrophilous' bacterium. Caballeronia sordidicola was consistently depleted in SI reburns. The depletion of this endophytic diazotroph raises questions about whether this is contributing to-or merely reflects-poor conifer seedling recolonization post-fire at SI reburns. While SI reburns had no significant effect on richness, dissimilarity between short- and long-interval pairs was significantly correlated with difference in soil pH, and there were small significant changes in overall community composition.


Assuntos
Incêndios , Taiga , Bactérias/genética , Ecossistema , Florestas , Solo/química , Árvores
4.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34697246

RESUMO

Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughout boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years.


Assuntos
Mudança Climática , Picea , Taiga , Incêndios Florestais , América do Norte
5.
Bioscience ; 70(8): 659-673, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32821066

RESUMO

Changing disturbance regimes and climate can overcome forest ecosystem resilience. Following high-severity fire, forest recovery may be compromised by lack of tree seed sources, warmer and drier postfire climate, or short-interval reburning. A potential outcome of the loss of resilience is the conversion of the prefire forest to a different forest type or nonforest vegetation. Conversion implies major, extensive, and enduring changes in dominant species, life forms, or functions, with impacts on ecosystem services. In the present article, we synthesize a growing body of evidence of fire-driven conversion and our understanding of its causes across western North America. We assess our capacity to predict conversion and highlight important uncertainties. Increasing forest vulnerability to changing fire activity and climate compels shifts in management approaches, and we propose key themes for applied research coproduced by scientists and managers to support decision-making in an era when the prefire forest may not return.

6.
Sci Rep ; 9(1): 18796, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827128

RESUMO

The size and frequency of large wildfires in western North America have increased in recent years, a trend climate change is likely to exacerbate. Due to fuel limitations, recently burned forests resist burning for upwards of 30 years; however, extreme fire-conducive weather enables reburning at shorter fire-free intervals than expected. This research quantifies the outcomes of short-interval reburns in upland and wetland environments of northwestern Canadian boreal forests and identifies an interactive effect of post-fire drought. Despite adaptations to wildfire amongst boreal plants, post-fire forests at paired short- and long-interval sites were significantly different, with short-interval sites having lower stem densities of trees due to reduced conifer recruitment, a higher proportion of broadleaf trees, less residual organic material, and reduced herbaceous vegetation cover. Drought reinforced changes in proportions of tree species and decreases in tree recruitment, reinforcing non-resilient responses to short-interval reburning. Drier and warmer weather will increase the incidence of short-interval reburning and amplify the ecological changes such events cause, as wildfire activity and post-fire drought increase synergistically. These interacting disturbances will accelerate climate-driven changes in boreal forest structure and composition. Our findings identify processes of ongoing and future change in a climate-sensitive biome.


Assuntos
Secas , Incêndios , Taiga , Incêndios Florestais , América do Norte , Tempo
7.
Environ Manage ; 52(6): 1427-39, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24036629

RESUMO

The wildland-urban interface (WUI) is the region where development meets and intermingles with wildlands. The WUI has an elevated fire risk due to the proximity of development and residents to wildlands with natural wildfire regimes. Existing methods of delineating WUI are typically applied over a large region, use proxies for risk, and do not consider site-specific fire hazard drivers. While these models are appropriate for federal and provincial risk management, municipal managers require models intended for smaller regions. The model developed here uses the Burn-P3 fire behavior model to model WUI from local fire susceptibility (FS) in two study communities. Forest fuel code (FFC) maps for the study communities were modified using remote sensing data to produce detailed forest edges, including ladder fuels, update data currency, and add buildings and roads. The modified FFC maps used in Burn-P3 produced bimodal FS distributions for each community. The WUI in these communities was delineated as areas within community bounds where FS was greater than or equal to -1 SD from the mean FS value ([Formula: see text]), which fell in the trough of the bimodal distribution. The WUI so delineated conformed to the definition of WUI. This model extends WUI modeling for broader risk management initiatives for municipal management of risk, as it (a) considers site-specific drivers of fire behavior; (b) models risk, represented by WUI, specific to a community; and, (c) does not use proxies for risk.


Assuntos
Cidades , Incêndios/estatística & dados numéricos , Modelos Teóricos , Gestão de Riscos/métodos , Meio Selvagem , Nova Escócia , Gestão de Riscos/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...