Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 26(14): 3662-3670, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32376656

RESUMO

PURPOSE: Patients with colorectal cancer with peritoneal metastases (CRPMs) have limited treatment options and the lowest colorectal cancer survival rates. We aimed to determine whether organoid testing could help guide precision treatment for patients with CRPMs, as the clinical utility of prospective, functional drug screening including nonstandard agents is unknown. EXPERIMENTAL DESIGN: CRPM organoids (peritonoids) isolated from patients underwent parallel next-generation sequencing and medium-throughput drug panel testing ex vivo to identify specific drug sensitivities for each patient. We measured the utility of such a service including: success of peritonoid generation, time to cultivate peritonoids, reproducibility of the medium-throughput drug testing, and documented changes to clinical therapy as a result of the testing. RESULTS: Peritonoids were successfully generated and validated from 68% (19/28) of patients undergoing standard care. Genomic and drug profiling was completed within 8 weeks and a formal report ranking drug sensitivities was provided to the medical oncology team upon failure of standard care treatment. This resulted in a treatment change for two patients, one of whom had a partial response despite previously progressing on multiple rounds of standard care chemotherapy. The barrier to implementing this technology in Australia is the need for drug access and funding for off-label indications. CONCLUSIONS: Our approach is feasible, reproducible, and can guide novel therapeutic choices in this poor prognosis cohort, where new treatment options are urgently needed. This platform is relevant to many solid organ malignancies.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Organoides/efeitos dos fármacos , Neoplasias Peritoneais/tratamento farmacológico , Medicina de Precisão/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Austrália , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Estudos de Viabilidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/secundário , Peritônio/citologia , Peritônio/patologia , Cultura Primária de Células/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes
2.
Tissue Eng Part A ; 24(5-6): 369-381, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28548569

RESUMO

Low collagen accumulation in the extracellular matrix is a pressing problem in cartilage tissue engineering, leading to a low collagen-to-glycosaminoglycan (GAG) ratio and poor mechanical properties in neocartilage. Soluble factors have been shown to increase collagen content, but may result in a more pronounced increase in GAG content. Thyroid hormones have been reported to stimulate collagen and GAG production, but reported outcomes, including which specific collagen types are affected, are variable throughout the literature. Here we investigated the ability of thyroxine (T4) to preferentially stimulate collagen production, as compared with GAG, in articular chondrocyte-derived scaffold-free engineered cartilage. Dose response curves for T4 in pellet cultures showed that 25 ng/mL T4 increased the total collagen content without increasing the GAG content, resulting in a statistically significant increase in the collagen-to-GAG ratio, a fold change of 2.3 ± 1.2, p < 0.05. In contrast, another growth factor, TGFß1, increased the GAG content in excess of threefold more than the increase in collagen. In large scaffold-free neocartilage, T4 also increased the total collagen/DNA at 1 month and at 2 months (fold increases of 2.1 ± 0.8, p < 0.01 and 2.1 ± 0.4, p < 0.001, respectively). Increases in GAG content were not statistically significant. The effect on collagen was largely specific to collagen type II, which showed a 2.8 ± 1.6-fold increase of COL2A1 mRNA expression (p < 0.01). Western blots confirmed a statistically significant increase in type II collagen protein at 1 month (fold increase of 2.2 ± 1.8); at 2 months, the fold increase of 3.7 ± 3.3 approached significance (p = 0.059). Collagen type X protein was less than the 0.1 µg limit of detection. T4 did not affect COL10A1 and COL1A2 gene expression in a statistically significant manner. Biglycan mRNA expression increased 2.6 ± 1.6-fold, p < 0.05. Results of this study show that an optimized dosage of T4 is able to increase collagen type II content, and do so preferential to GAG. Moreover, the upregulation of COL2A1 gene expression and type II collagen protein accumulation, without a concomitant increase in collagens type I or type X, signifies a direct enhancement of chondrogenesis of hyaline articular cartilage without the induction of terminal differentiation.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Colágeno Tipo II/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Tiroxina/farmacologia , Engenharia Tecidual , Animais , Cartilagem Articular/citologia , Condrócitos/citologia , Relação Dose-Resposta a Droga , Masculino , Coelhos
3.
PLoS One ; 12(6): e0178608, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28594877

RESUMO

We have established proof of principle for the Indicator Cell Assay Platform™ (iCAP™), a broadly applicable tool for blood-based diagnostics that uses specifically-selected, standardized cells as biosensors, relying on their innate ability to integrate and respond to diverse signals present in patients' blood. To develop an assay, indicator cells are exposed in vitro to serum from case or control subjects and their global differential response patterns are used to train reliable, disease classifiers based on a small number of features. In a feasibility study, the iCAP detected pre-symptomatic disease in a murine model of amyotrophic lateral sclerosis (ALS) with 94% accuracy (p-Value = 3.81E-6) and correctly identified samples from a murine Huntington's disease model as non-carriers of ALS. Beyond the mouse model, in a preliminary human disease study, the iCAP detected early stage Alzheimer's disease with 72% cross-validated accuracy (p-Value = 3.10E-3). For both assays, iCAP features were enriched for disease-related genes, supporting the assay's relevance for disease research.


Assuntos
Doença de Alzheimer/diagnóstico , Esclerose Lateral Amiotrófica/diagnóstico , Bioensaio/métodos , Doença de Alzheimer/genética , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Corpos Embrioides/metabolismo , Humanos , Masculino , Camundongos , Sensibilidade e Especificidade , Superóxido Dismutase-1/genética
4.
J Tissue Eng Regen Med ; 11(2): 412-424, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-24965503

RESUMO

Scaffold-free engineered cartilage is being explored as a treatment for osteoarthritis. In this study, frictional shear stress was applied to determine the friction and damage behaviour of scaffold-free engineered cartilage, and tissue composition was investigated as it related to damage. Scaffold-free engineered cartilage frictional shear stress was found to exhibit a time-varying response similar to that of native cartilage. However, damage occurred that was not seen in native cartilage, manifesting primarily as tearing through the central plane of the constructs. In engineered cartilage, cells occupied a significantly larger portion of the tissue in the central region where damage was most prominent (18 ± 3% of tissue was comprised of cells in the central region vs 5 ± 1% in the peripheral region; p < 0.0001). In native cartilage, cells comprised 1-4% of tissue for all regions. Average bulk cellularity of engineered cartilage was also greater (68 × 103 ± 4 × 103 vs 52 × 103 ± 22 × 103 cells/mg), although this difference was not significant. Bulk tissue comparisons showed significant differences between engineered and native cartilage in hydroxyproline content (8 ± 2 vs 45 ± 3 µg HYP/mg dry weight), solid content (12.5 ± 0.4% vs 17.9 ± 1.2%), shear modulus (0.06 ± 0.02 vs 0.15 ± 0.07 MPa) and aggregate modulus (0.12 ± 0.03 vs 0.32 ± 0.14 MPa), respectively. These data indicate that enhanced collagen content and more uniform extracellular matrix distribution are necessary to reduce damage susceptibility. Copyright © 2014 John Wiley & Sons, Ltd.


Assuntos
Cartilagem Articular/patologia , Osteoartrite/terapia , Estresse Mecânico , Engenharia Tecidual/métodos , Animais , Reatores Biológicos , Células Cultivadas , Condrócitos/citologia , Colágeno/química , Matriz Extracelular/química , Fricção , Hidroxiprolina/química , Pressão , Coelhos , Propriedades de Superfície
5.
Connect Tissue Res ; 57(4): 319-33, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27128439

RESUMO

PURPOSE/AIM: To determine the effect of reduced (5%) oxygen tension on chondrogenesis of auricular-derived chondrocytes. Currently, many cell and tissue culture experiments are performed at 20% oxygen with 5% carbon dioxide. Few cells in the body are subjected to this supra-physiological oxygen tension. Chondrocytes and their mesenchymal progenitors are widely reported to have greater chondrogenic expression when cultured at low, more physiological, oxygen tension (1-7%). Although generally accepted, there is still some controversy, and different culture methods, species, and outcome metrics cloud the field. These results are, however, articular chondrocyte biased and have not been reported for auricular-derived chondrocytes. MATERIALS AND METHODS: Auricular and articular chondrocytes were isolated from skeletally mature New Zealand White rabbits, expanded in culture and differentiated in high density cultures with serum-free chondrogenic media. Cartilage tissue derived from aggregate cultures or from the tissue engineered sheets were assessed for biomechanical, glycosaminoglycan, collagen, collagen cross-links, and lysyl oxidase activity and expression. RESULTS: Our studies show increased proliferation rates for both auricular and articular chondrocytes at low (5%) O2 versus standard (20%) O2. In our scaffold-free chondrogenic cultures, low O2 was found to increase articular chondrocyte accumulation of glycosaminoglycan, but not cross-linked type II collagen, or total collagen. Conversely, auricular chondrocytes accumulated less glycosaminoglycan, cross-linked type II collagen and total collagen under low oxygen tension. CONCLUSIONS: This study highlights the dramatic difference in response to low O2 of chondrocytes isolated from different anatomical sites. Low O2 is beneficial for articular-derived chondrogenesis but detrimental for auricular-derived chondrogenesis.


Assuntos
Cartilagem Articular/citologia , Condrócitos/citologia , Cartilagem da Orelha/citologia , Oxigênio/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Colágeno/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Glicosaminoglicanos/metabolismo , Imuno-Histoquímica , Masculino , Proteína-Lisina 6-Oxidase/metabolismo , Coelhos
6.
J Mech Behav Biomed Mater ; 28: 62-70, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23973614

RESUMO

A previously developed novel imaging technique for determining the depth dependent properties of cartilage in simple shear is implemented. Shear displacement is determined from images of deformed lines photobleached on a sample, and shear strain is obtained from the derivative of the displacement. We investigated the feasibility of an alternative systematic approach to numerical differentiation for computing the shear strain that is based on fitting a continuous function to the shear displacement. Three models for a continuous shear displacement function are evaluated: polynomials, cubic splines, and non-parametric locally weighted scatter plot curves. Four independent approaches are then applied to identify the best-fit model and the accuracy of the first derivative. One approach is based on the Akaiki Information Criteria, and the Bayesian Information Criteria. The second is based on a method developed to smooth and differentiate digitized data from human motion. The third method is based on photobleaching a predefined circular area with a specific radius. Finally, we integrate the shear strain and compare it with the total shear deflection of the sample measured experimentally. Results show that 6th and 7th order polynomials are the best models for the shear displacement and its first derivative. In addition, failure of tissue-engineered cartilage, consistent with previous results, demonstrates the qualitative value of this imaging approach.


Assuntos
Cartilagem Articular/citologia , Teste de Materiais , Resistência ao Cisalhamento , Estresse Mecânico , Engenharia Tecidual , Animais , Bovinos , Estudos de Viabilidade , Humanos
7.
Biores Open Access ; 1(4): 157-65, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23514898

RESUMO

Scaffold-free cartilage engineering techniques may provide a simple alternative to traditional methods employing scaffolds. We previously reported auricular chondrocyte-derived constructs for use in an engineered trachea model; however, the construct generation methods were not reported in detail. In this study, methods for cartilage construct generation from auricular and articular cell sources are described in detail, and the resulting constructs are compared for use in a joint resurfacing model. Attachment of cartilage sheets to porous tantalum is also investigated as a potential vehicle for future attachment to subchondral bone. Large scaffold-free cartilage constructs were produced from culture-expanded chondrocytes from skeletally mature rabbits, and redifferentiated in a chemically-defined culture medium. Auricular constructs contained more glycosaminoglycan (39.6±12.7 vs. 9.7±1.9 µg/mg wet weight, mean and standard deviation) and collagen (2.7±0.45 vs. 1.1±0.2 µg/mg wet weight, mean and standard deviation) than articular constructs. Aggregate modulus was also higher for auricular constructs vs. articular constructs (0.23±0.07 vs. 0.12±0.03 MPa, mean and standard deviation). Attachment of constructs to porous tantalum was achieved by neocartilage ingrowth into tantalum pores. These results demonstrate that large scaffold-free neocartilage constructs can be produced from mature culture-expanded chondrocytes in a chemically-defined medium, and that these constructs can be attached to porous tantalum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...