Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 200(9): 1134-1145, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170808

RESUMO

Rationale: Electronic cigarette (e-cig) use has been widely adopted under the perception of safety. However, possibly adverse effects of e-cig vapor in never-smokers are not well understood.Objectives: To test the effects of nicotine-containing e-cig vapors on airway mucociliary function in differentiated human bronchial epithelial cells isolated from never-smokers and in the airways of a novel, ovine large animal model.Methods: Mucociliary parameters were measured in human bronchial epithelial cells and in sheep. Systemic nicotine delivery to sheep was quantified using plasma cotinine levels, measured by ELISA.Measurements and Main Results:In vitro, exposure to e-cig vapor reduced airway surface liquid hydration and increased mucus viscosity of human bronchial epithelial cells in a nicotine-dependent manner. Acute nicotine exposure increased intracellular calcium levels, an effect primarily dependent on TRPA1 (transient receptor potential ankyrin 1). TRPA1 inhibition with A967079 restored nicotine-mediated impairment of mucociliary parameters including mucus transport in vitro. Sheep tracheal mucus velocity, an in vivo measure of mucociliary clearance, was also reduced by e-cig vapor. Nebulized e-cig liquid containing nicotine also reduced tracheal mucus velocity in a dose-dependent manner and elevated plasma cotinine levels. Importantly, nebulized A967079 reversed the effects of e-cig liquid on sheep tracheal mucus velocity.Conclusions: Our findings show that inhalation of e-cig vapor causes airway mucociliary dysfunction in vitro and in vivo. Furthermore, they suggest that the main nicotine effect on mucociliary function is mediated by TRPA1 and not nicotinic acetylcholine receptors.


Assuntos
Vapor do Cigarro Eletrônico/farmacologia , Células Epiteliais/efeitos dos fármacos , Estimulantes Ganglionares/farmacologia , Depuração Mucociliar/efeitos dos fármacos , Nicotina/farmacologia , Canal de Cátion TRPA1/metabolismo , Animais , Técnicas de Cultura de Células , Cotinina , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/metabolismo , Humanos , Ovinos , Vaping
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...